Climate Change Data Portal
DOI | 10.1073/pnas.1817580116 |
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude | |
Zhang, Ticao1,2; Qiao, Qin3; Novikova, Polina Yu.4,5; Wang, Qia1; Yue, Jipei1; Guan, Yanlong1; Ming, Shengping6; Liu, Tianmeng6; De, Ji6; Liu, Yixuan6; Al-Shehbaz, Ihsan A.7; Sun, Hang2; Van Montagu, Marc4,5; Huang, Jinling1,8,9; Van de Peer, Yves4,5,10; Qiong, La6 | |
发表日期 | 2019 |
ISSN | 0027-8424 |
卷号 | 116期号:14页码:7137-7146 |
英文摘要 | Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister Glade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the 5-locus, the reason for the transition to self-fertilization of C himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments. |
WOS研究方向 | Science & Technology - Other Topics |
来源期刊 | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/96289 |
作者单位 | 1.Chinese Acad Sci, Kunming Inst Bot, Key Lab Plant Divers & Biogeog East Asia, Kunming 650201, Yunnan, Peoples R China; 2.Yunnan Univ Chinese Med, Coll Chinese Mat Med, Kunming 650500, Yunnan, Peoples R China; 3.Yunnan Univ, Sch Agr, Kunming 650091, Yunnan, Peoples R China; 4.Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium; 5.VIB, Ctr Plant Syst Biol, B-9052 Ghent, Belgium; 6.Tibet Univ, Coll Sci, Inst Biodivers Sci & Geobiol, Lhasa 850012, Peoples R China; 7.Missouri Bot Garden, Pob 299, St Louis, MO 63166 USA; 8.East Carolina Univ, Dept Biol, Greenville, NC 27858 USA; 9.Henan Univ, Sch Life Sci, State Key Lab Cotton Biol, Inst Plant Stress Biol, Kaifeng 475001, Peoples R China; 10.Univ Pretoria, Dept Biochem Genet & Microbiol, ZA-0028 Pretoria, South Africa |
推荐引用方式 GB/T 7714 | Zhang, Ticao,Qiao, Qin,Novikova, Polina Yu.,et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude[J],2019,116(14):7137-7146. |
APA | Zhang, Ticao.,Qiao, Qin.,Novikova, Polina Yu..,Wang, Qia.,Yue, Jipei.,...&Qiong, La.(2019).Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,116(14),7137-7146. |
MLA | Zhang, Ticao,et al."Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 116.14(2019):7137-7146. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。