CCPortal
DOI10.1289/ehp.1510267
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
Mansouri, Kamel1,2; Abdelaziz, Ahmed3; Rybacka, Aleksandra4; Roncaglioni, Alessandra5; Tropsha, Alexander6; Varnek, Alexandre7; Zakharov, Alexey8; Worth, Andrew9; Richard, Ann M.1; Grulke, Christopher M.1; Trisciuzzi, Daniela10; Fourches, Denis6; Horvath, Dragos7; Benfenati, Emilio5; Muratov, Eugene6; Wedebye, Eva Bay11; Grisoni, Francesca12; Mangiatordi, Giuseppe F.10; Incisivo, Giuseppina M.5; Hong, Huixiao13; Ng, Hui W.13; Tetko, Igor V.3,14; Balabin, Ilya15; Kancherla, Jayaram1; Shen, Jie16; Burton, Julien9; Nicklaus, Marc8; Cassotti, Matteo12; Nikolov, Nikolai G.11; Nicolotti, Orazio10; Andersson, Patrik L.4; Zang, Qingda17; Politi, Regina6; Beger, Richard D.18; Todeschini, Roberto12; Huang, Ruili19; Farag, Sherif6; Rosenberg, Sine A.11; Slavov, Svetoslav17; Hu, Xin19; Judson, Richard S.1
发表日期2016-07-01
ISSN0091-6765
卷号124期号:7页码:1023-1033
英文摘要

BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program.


OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing.


METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies.


RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing.


CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points.


语种英语
WOS记录号WOS:000380749300025
来源期刊ENVIRONMENTAL HEALTH PERSPECTIVES
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/62069
作者单位1.US EPA, Natl Ctr Computat Toxicol, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA;
2.Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA;
3.German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Muenchen, Inst Struct Biol, Neuherberg, Germany;
4.Umea Univ, Dept Chem, Umea, Sweden;
5.Ist Ric Farmacol Mario Negri, IRCCS, Environm Chem & Toxicol Lab, Milan, Italy;
6.Univ North Carolina Chapel Hill, Lab Mol Modeling, Chapel Hill, NC USA;
7.Univ Strasbourg, Lab Chemoinformat, Strasbourg, France;
8.NCI, NIH, US Dept HHS, Bethesda, MD 20892 USA;
9.European Commiss Ispra, Joint Res Ctr, IHCP, Ispra, Italy;
10.Univ Bari, Dept Pharmacy Drug Sci, Bari, Italy;
11.Tech Univ Denmark, Natl Food Inst, Div Toxicol & Risk Assessment, Copenhagen, Denmark;
12.Univ Milano Bicocca, Milano Chemometr & QSAR Res Grp, Milan, Italy;
13.US FDA, Div Bioinformat & Biostat, Natl Ctr Toxicol Res, USDA, Jefferson, AZ USA;
14.BigChem GmbH, Neuherberg, Germany;
15.Lockheed Martin, High Performance Comp, Res Triangle Pk, NC USA;
16.Res Inst Fragrance Mat Inc, Woodcliff Lake, NJ USA;
17.Integrated Lab Syst Inc, Res Triangle Pk, NC USA;
18.USDA, Div Syst Biol, Natl Ctr Toxicol Res, Jefferson, AZ USA;
19.NIH, Natl Ctr Adv Translat Sci, DHHS, Bldg 10, Bethesda, MD 20892 USA
推荐引用方式
GB/T 7714
Mansouri, Kamel,Abdelaziz, Ahmed,Rybacka, Aleksandra,et al. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project[J]. 美国环保署,2016,124(7):1023-1033.
APA Mansouri, Kamel.,Abdelaziz, Ahmed.,Rybacka, Aleksandra.,Roncaglioni, Alessandra.,Tropsha, Alexander.,...&Judson, Richard S..(2016).CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.ENVIRONMENTAL HEALTH PERSPECTIVES,124(7),1023-1033.
MLA Mansouri, Kamel,et al."CERAPP: Collaborative Estrogen Receptor Activity Prediction Project".ENVIRONMENTAL HEALTH PERSPECTIVES 124.7(2016):1023-1033.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mansouri, Kamel]的文章
[Abdelaziz, Ahmed]的文章
[Rybacka, Aleksandra]的文章
百度学术
百度学术中相似的文章
[Mansouri, Kamel]的文章
[Abdelaziz, Ahmed]的文章
[Rybacka, Aleksandra]的文章
必应学术
必应学术中相似的文章
[Mansouri, Kamel]的文章
[Abdelaziz, Ahmed]的文章
[Rybacka, Aleksandra]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。