消息
×
loading..
CCPortal
DOI10.1093/toxsci/kfw207
How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology
Wittwehr, Clemens1; Aladjov, Hristo2; Ankley, Gerald3; Byrne, Hugh J.4; de Knecht, Joop5; Heinzle, Elmar6; Klambauer, Guenter7; Landesmann, Brigitte1; Luijten, Mirjam5; MacKay, Cameron8; Maxwell, Gavin; Meek, M. E. (Bette); Paini, Alicia; Perkins, Edward9,10; Sobanski, Tomasz11; Villeneuve, Dan3; Waters, Katrina M.12; Whelan, Maurice1
发表日期2017-02-01
ISSN1096-6080
卷号155期号:2页码:326-336
英文摘要

Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.


英文关键词Adverse Outcome Pathways;AOP;quantitative AOP;computational prediction model
语种英语
WOS记录号WOS:000397044200005
来源期刊TOXICOLOGICAL SCIENCES (IF:3.564[JCR-2018],4.132[5-Year])
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/61909
作者单位1.European Commiss, Joint Res Ctr, I-21027 Ispra, Italy;
2.Bulgarian Acad Sci, Sofia 1113, Bulgaria;
3.US Environm Protect Agcy, Duluth, MN 55804 USA;
4.FOCAS Res Inst, Dublin 8, Ireland;
5.Natl Inst Publ Hlth & Environm RIVM, NL-3721 MA Bilthoven, Netherlands;
6.Univ Saarland, D-66123 Saarbrucken, Germany;
7.Johannes Kepler Univ Linz, A-4040 Linz, Austria;
8.Unilever Safety & Environmenta Assurance Ctr, Sharnbrook MK44 1LQ, Beds, England;
9.US Army Engn Res, Vicksburg, MS 39180 USA;
10.Dev Ctr Vicksburg, Vicksburg, MS 39180 USA;
11.ECHA, European Chem Agcy, Helsinki 00121, Finland;
12.Pacific Northwest Natl Lab, Richland, WA 99352 USA
推荐引用方式
GB/T 7714
Wittwehr, Clemens,Aladjov, Hristo,Ankley, Gerald,et al. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology[J]. 美国环保署,2017,155(2):326-336.
APA Wittwehr, Clemens.,Aladjov, Hristo.,Ankley, Gerald.,Byrne, Hugh J..,de Knecht, Joop.,...&Whelan, Maurice.(2017).How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology.TOXICOLOGICAL SCIENCES,155(2),326-336.
MLA Wittwehr, Clemens,et al."How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology".TOXICOLOGICAL SCIENCES 155.2(2017):326-336.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wittwehr, Clemens]的文章
[Aladjov, Hristo]的文章
[Ankley, Gerald]的文章
百度学术
百度学术中相似的文章
[Wittwehr, Clemens]的文章
[Aladjov, Hristo]的文章
[Ankley, Gerald]的文章
必应学术
必应学术中相似的文章
[Wittwehr, Clemens]的文章
[Aladjov, Hristo]的文章
[Ankley, Gerald]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。