CCPortal
DOI10.5194/acp-21-7671-2021
Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE
Ghosh S.; Verma S.; Kuttippurath J.; Menut L.
发表日期2021
ISSN1680-7316
起始页码7671
结束页码7694
卷号21期号:10
英文摘要To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol-climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g.The Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1 0.1) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 - CMIP6, Emission Database for Global Atmospheric Research-V4 - EDGAR-V4, and Peking University BC Inventory - PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450- 1000 kg km2 yr1) over most of the IGP, with this being the highest (2500 kg km2 yr1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14-25 ?gm3 (6- 8 ?gm3) and 0.04-0.08 ?gm3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj-Allahabad- Varanasi (central IGP), Patna-Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (C30 to C50Wm2) to be about 50 %-70% larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2-3 times and a reduction in surface cooling by 10 %-20 %, with net warming at the top of the atmosphere (TOA) of 10-15Wm2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %-50% lower from the bottomup than the Constrained simulation. © 2021 Copernicus GmbH. All rights reserved.
语种英语
scopus关键词atmospheric chemistry; atmospheric modeling; black carbon; emission inventory; radiative transfer; spatial distribution; winter; Gangetic Plain
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/246874
作者单位Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Kharagpur, 721302, India; Laboratoire de Météorologie Dynamique, IPSL, CNRS/Ecole Polytechnique/Sorbonne Université/Ecole Normale Supérieure, Palaiseau CEDEX, 91128, France
推荐引用方式
GB/T 7714
Ghosh S.,Verma S.,Kuttippurath J.,et al. Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE[J],2021,21(10).
APA Ghosh S.,Verma S.,Kuttippurath J.,&Menut L..(2021).Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(10).
MLA Ghosh S.,et al."Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.10(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ghosh S.]的文章
[Verma S.]的文章
[Kuttippurath J.]的文章
百度学术
百度学术中相似的文章
[Ghosh S.]的文章
[Verma S.]的文章
[Kuttippurath J.]的文章
必应学术
必应学术中相似的文章
[Ghosh S.]的文章
[Verma S.]的文章
[Kuttippurath J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。