Climate Change Data Portal
DOI | 10.5194/acp-21-8531-2021 |
Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China | |
Zhou Y.; West C.P.; Hettiyadura A.P.S.; Niu X.; Wen H.; Cui J.; Shi T.; Pu W.; Wang X.; Laskin A. | |
发表日期 | 2021 |
ISSN | 1680-7316 |
起始页码 | 8531 |
结束页码 | 8555 |
卷号 | 21期号:11 |
英文摘要 | Water-soluble organic carbon (WSOC) in the cryosphere has an important impact on the biogeochemistry cycling and snow-ice surface energy balance through changes in the surface albedo. This work reports on the chemical characterization of WSOC in 28 representative snowpack samples collected across a regional area of northern Xinjiang, northwestern China. We employed multimodal analytical chemistry techniques to investigate both bulk and molecular-level composition of WSOC and its optical properties, informing the follow-up radiative forcing (RF) modeling estimates. Based on the geographic differences and proximity of emission sources, the snowpack collection sites were grouped as urban/industrial (U), rural/remote (R), and soil-influenced (S) sites, for which average WSOC total mass loadings were measured as 1968-953 ngg-1 (U), 885-328 ngg-1 (R), and 2082-1438 ng g-1 (S), respectively. The S sites showed the higher mass absorption coefficients at 365 nm (MAC365) of 0.94-0.31m2 g-1 compared to those of U and R sites (0.39-0.11m2 g-1 and 0.38-0.12m2 g-1, respectively). Bulk composition of WSOC in the snowpack samples and its basic source apportionment was inferred from the excitation-emission matrices and the parallel factor analysis featuring relative contributions of one protein-like (PRLIS) and two humic-like (HULIS-1 and HULIS-2) components with ratios specific to each of the S, U, and R sites. Additionally, a sample from site 120 showed unique pollutant concentrations and spectroscopic features remarkably different from all other U, R, and S samples. Molecular-level characterization of WSOC using high-resolution mass spectrometry (HRMS) provided further insights into chemical differences among four types of samples (U, R, S, and 120). Specifically, many reduced-sulfur-containing species with high degrees of unsaturation and aromaticity were uniquely identified in U samples, suggesting an anthropogenic source. Aliphatic/proteinlike species showed the highest contribution in R samples, indicating their biogenic origin. The WSOC components from S samples showed high oxygenation and saturation levels. A few unique CHON and CHONS compounds with high unsaturation degree and molecular weight were detected in the 120 sample, which might be anthraquinone derivatives from plant debris. Modeling of the WSOC-induced RF values showed warming effects of 0.04 to 0.59Wm-2 among different groups of sites, which contribute up to 16% of that caused by black carbon (BC), demonstrating the important influences of WSOC on the snow energy budget. © Author(s) 2021. |
语种 | 英语 |
scopus关键词 | atmospheric chemistry; concentration (composition); molecular analysis; optical property; organic carbon; radiative transfer; snowpack; source apportionment; China; Xinjiang Uygur |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/246835 |
作者单位 | Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States; Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, United States; Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China |
推荐引用方式 GB/T 7714 | Zhou Y.,West C.P.,Hettiyadura A.P.S.,et al. Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China[J],2021,21(11). |
APA | Zhou Y..,West C.P..,Hettiyadura A.P.S..,Niu X..,Wen H..,...&Laskin A..(2021).Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(11). |
MLA | Zhou Y.,et al."Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.11(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。