Climate Change Data Portal
DOI | 10.1007/s00382-018-4349-2 |
A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies | |
Sahastrabuddhe R.; Ghosh S.; Saha A.; Murtugudde R. | |
发表日期 | 2019 |
ISSN | 0930-7575 |
起始页码 | 3661 |
结束页码 | 3681 |
卷号 | 52期号:2020-05-06 |
英文摘要 | Seasonal prediction of Indian Summer Monsoon Rainfall (ISMR, rainfall during June to September over India) has remained an important scientific challenge for decades, due to its complex multi-scale nature. Statistical and dynamical seasonal ISMR predictions have traditionally relied on the relatively small variability of the spatially averaged monsoon rainfall over India, known as All India Monsoon Rainfall (AIMR). While this has served to mitigate socioeconomic impacts to some extent, overall prediction skill has remained relatively low (Wang et al. in Nat Commun 6:7154. https://doi.org/10.1038/ncomms8154, 2015) while the spatial variability is anything but small. Here we find that the classification of deficit/ dry or surplus/ wet monsoon years based on AIMR does not add value at a regional scale due to the very high heterogeneity of monsoon rainfall, even in the extreme years. To demonstrate the need and the potential to predict this important spatial heterogeneity, we improve the classification of monsoon years by focusing on the spatial patterns of rainfall anomalies within different meteorological subdivisions of India. We apply the k-means clustering methodology and also offer cluster validation. Cluster validation reveals the existence of nine clusters of monsoon years with distinct spatial patterns of monsoon rainfall anomalies. The composite anomalies of sea surface temperature (SST) and winds during March to May (MAM) and June to September (JJAS) show distinct hydroclimatic teleconnections indicating potential predictability of regional monsoon rainfall at seasonal scale. To demonstrate the potential prediction pathways for spatial patterns of ISMR, we develop a statistical seasonal prediction model based on Classification and Regression Tree (CART) between SST over different oceanic regions as predictors and monsoon classes as predictands for the period 1901–2010. Search for the potential regressors reveals the importance of new predictors such as Atlantic Niño and SST over North Pacific region along with conventional predictors such as El Niño Southern Oscillation (ENSO), Indian Ocean Dipole/Zonal Mode (IODZM), etc. Validation of the method is performed for 2011–2015 and the model is able to predict the regional pattern of monsoon rainfall for 4 out of the 5 years. The purpose of this prediction exercise is to demonstrate the need to focus on the process and predictive understanding of these clusters and their predictability. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. |
英文关键词 | Hydroclimatic teleconnections; Indian monsoon; Seasonal prediction; Spatial patterns |
语种 | 英语 |
scopus关键词 | climate modeling; climate prediction; El Nino-Southern Oscillation; monsoon; rainfall; sea surface temperature; spatial analysis; spatial variation; teleconnection; India |
来源期刊 | Climate Dynamics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/146448 |
作者单位 | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India; Earth System Science Interdisciplinary Center (ESSIC)/DOAS, University of Maryland, College Park, MD, United States |
推荐引用方式 GB/T 7714 | Sahastrabuddhe R.,Ghosh S.,Saha A.,et al. A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies[J],2019,52(2020-05-06). |
APA | Sahastrabuddhe R.,Ghosh S.,Saha A.,&Murtugudde R..(2019).A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies.Climate Dynamics,52(2020-05-06). |
MLA | Sahastrabuddhe R.,et al."A minimalistic seasonal prediction model for Indian monsoon based on spatial patterns of rainfall anomalies".Climate Dynamics 52.2020-05-06(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。