CCPortal

浏览/检索结果: 共12条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China 期刊论文
Natural Hazards, 2021, 卷号: 108, 期号: 1
作者:  Ling Q.;  Zhang Q.;  Zhang J.;  Kong L.;  Zhang W.;  Zhu L.
收藏  |  浏览/下载:34/0  |  提交时间:2021/09/01
Displacement prediction  Kernel extreme learning machine  Kernel functions  Maximum information coefficient  Variational mode decomposition  
Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area 期刊论文
Natural Hazards, 2021, 卷号: 107, 期号: 2
作者:  Zhang Y.-G.;  Chen X.-Q.;  Liao R.-P.;  Wan J.-L.;  He Z.-Y.;  Zhao Z.-X.;  Zhang Y.;  Su Z.-Y.
收藏  |  浏览/下载:33/0  |  提交时间:2021/09/01
Displacement prediction  Extreme learning machine  Intelligent water cycle algorithm  Step-type landslide  The Three Gorges Reservoir area  
The adoption of ELM to the prediction of soil liquefaction based on CPT 期刊论文
Natural Hazards, 2021, 卷号: 107, 期号: 1
作者:  Zhang Y.-G.;  Qiu J.;  Zhang Y.;  Wei Y.
收藏  |  浏览/下载:31/0  |  提交时间:2021/09/01
Cone penetration test  Extreme learning machine  Prediction model  Soil liquefaction  
Sensitivity analysis of parameters influencing the ice–seabed interaction in sand by using extreme learning machine 期刊论文
Natural Hazards, 2021, 卷号: 106, 期号: 3
作者:  Azimi H.;  Shiri H.
收藏  |  浏览/下载:31/0  |  提交时间:2021/09/01
Extreme learning machine  Ice–seabed interaction  Sandy seabed  Sensitivity analysis  Uncertainty analysis  
A search method for probabilistic critical slip surfaces with arbitrary shapes and its application in slope reliability analysis 期刊论文
Natural Hazards, 2021, 卷号: 107, 期号: 2
作者:  Liu Y.;  Ren W.;  Liu C.;  Fu G.;  Xu W.;  Cai S.
收藏  |  浏览/下载:24/0  |  提交时间:2021/09/01
Monte Carlo simulation  Online sequential extreme learning machine  Sequential quadratic programming algorithm  Slip surface search algorithm  Slope reliability analysis  
Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms 期刊论文
, 2020, 卷号: 138
作者:  Zhao Y.;  Qu R.;  Xing Z.;  Lu W.
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/28
Contamination  Efficiency  Genetic algorithms  Groundwater  Groundwater pollution  Heuristic algorithms  Knowledge acquisition  Learning algorithms  Machine learning  Modular robots  Particle swarm optimization (PSO)  Quantum computers  Contaminant concentrations  Contaminant sources  Extreme learning machine  Groundwater contaminants  Heuristic optimization algorithms  Heuristic search algorithms  Source characteristics  Traditional genetic algorithms  Computational efficiency  accuracy assessment  genetic algorithm  groundwater pollution  identification method  machine learning  optimization  reliability analysis  surrogate method  
The casualty prediction of earthquake disaster based on Extreme Learning Machine method 期刊论文
Natural Hazards, 2020, 卷号: 102, 期号: 3
作者:  Xing H.;  Junyi S.;  Jin H.
收藏  |  浏览/下载:38/0  |  提交时间:2021/09/01
Casualty prediction  Earthquake disaster  Extreme Learning Machine (ELM)  
Hydrological Responses to the Future Climate Change in a Data Scarce Region, Northwest China: Application of Machine Learning Models 期刊论文
WATER, 2019, 卷号: 11, 期号: 8
作者:  Zhu, Rui;  Yang, Linshan;  Liu, Tao;  Wen, Xiaohu;  Zhang, Liming;  Chang, Yabin
收藏  |  浏览/下载:34/0  |  提交时间:2019/10/08
global climate model  hydrological response  extreme learning machine  support vector regression  Heihe River  
Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature 期刊论文
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 卷号: 33, 期号: 4-6, 页码: 1035-1056
作者:  MoradiKhaneghahi, Mahsa;  Lee, Taesam;  Singh, Vijay P.
收藏  |  浏览/下载:37/0  |  提交时间:2019/10/08
Artificial neural network  Extreme learning machine  Feature selection  Stepwise  Temperature downscaling  
Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems 期刊论文
JOURNAL OF HYDROLOGY, 2019, 卷号: 570
作者:  Wen, Xiaohu;  Feng, Qi;  Deo, Ravinesh C.;  Wu, Min;  Yin, Zhenliang;  Yang, Linshan;  Singh, Vijay P.
收藏  |  浏览/下载:56/0  |  提交时间:2019/11/08
Expert system  Runoff  Integrated model  Complete ensemble empirical mode decomposition adaptive noise (CEEMDAN)  Variational mode decomposition (VMD)  Extreme learning machine (ELM)