Climate Change Data Portal
DOI | 10.1007/s00477-019-01680-4 |
Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature | |
MoradiKhaneghahi, Mahsa; Lee, Taesam; Singh, Vijay P. | |
发表日期 | 2019-06-01 |
ISSN | 1436-3240 |
EISSN | 1436-3259 |
卷号 | 33期号:4-6页码:1035-1056 |
英文摘要 | Increasing temperature from climate change can bring a number of different risks such as more droughts and heat waves, and increasing sea level rise. Assessment of climate change with future scenarios is essential to adapt these impacts. To provide climat |
关键词 | Artificial neural networkExtreme learning machineFeature selectionStepwiseTemperature downscaling |
学科领域 | Engineering, Environmental;Engineering, Civil;Environmental Sciences;Statistics & Probability;Water Resources |
语种 | 英语 |
WOS记录号 | WOS:000472942200006 |
来源期刊 | STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/80960 |
作者单位 | Gyeongsang Natl Univ, Dept Civil Engn, ERI, 501 Jinju Daero, Jinju 660701, Gyeongnam, South Korea |
推荐引用方式 GB/T 7714 | MoradiKhaneghahi, Mahsa,Lee, Taesam,Singh, Vijay P.. Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature[J],2019,33(4-6):1035-1056. |
APA | MoradiKhaneghahi, Mahsa,Lee, Taesam,&Singh, Vijay P..(2019).Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,33(4-6),1035-1056. |
MLA | MoradiKhaneghahi, Mahsa,et al."Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 33.4-6(2019):1035-1056. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。