CCPortal
DOI10.1007/s00477-019-01680-4
Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature
MoradiKhaneghahi, Mahsa; Lee, Taesam; Singh, Vijay P.
发表日期2019-06-01
ISSN1436-3240
EISSN1436-3259
卷号33期号:4-6页码:1035-1056
英文摘要Increasing temperature from climate change can bring a number of different risks such as more droughts and heat waves, and increasing sea level rise. Assessment of climate change with future scenarios is essential to adapt these impacts. To provide climat
关键词Artificial neural networkExtreme learning machineFeature selectionStepwiseTemperature downscaling
学科领域Engineering, Environmental;Engineering, Civil;Environmental Sciences;Statistics & Probability;Water Resources
语种英语
WOS记录号WOS:000472942200006
来源期刊STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/80960
作者单位Gyeongsang Natl Univ, Dept Civil Engn, ERI, 501 Jinju Daero, Jinju 660701, Gyeongnam, South Korea
推荐引用方式
GB/T 7714
MoradiKhaneghahi, Mahsa,Lee, Taesam,Singh, Vijay P.. Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature[J],2019,33(4-6):1035-1056.
APA MoradiKhaneghahi, Mahsa,Lee, Taesam,&Singh, Vijay P..(2019).Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,33(4-6),1035-1056.
MLA MoradiKhaneghahi, Mahsa,et al."Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 33.4-6(2019):1035-1056.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[MoradiKhaneghahi, Mahsa]的文章
[Lee, Taesam]的文章
[Singh, Vijay P.]的文章
百度学术
百度学术中相似的文章
[MoradiKhaneghahi, Mahsa]的文章
[Lee, Taesam]的文章
[Singh, Vijay P.]的文章
必应学术
必应学术中相似的文章
[MoradiKhaneghahi, Mahsa]的文章
[Lee, Taesam]的文章
[Singh, Vijay P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。