CCPortal
DOI10.1109/TGRS.2019.2892903
Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability
Ibarrola-Ulzurrun, Edurne1; Drumetz, Lucas2; Marcello, Javier3; Gonzalo-Martin, Consuelo4; ChanussotO, Jocelyn5
发表日期2019
ISSN0196-2892
EISSN1558-0644
卷号57期号:7页码:4775-4788
英文摘要

Climate change and anthropogenic pressure are causing an indisputable decline in biodiversity; therefore, the need of environmental knowledge is important to develop the appropriate management plans. In this context, remote sensing and, specifically, hyperspectral imagery (HSI) can contribute to the generation of vegetation maps for ecosystem monitoring. To properly obtain such information and to address the mixed pixels inconvenience, the richness of the hyperspectral data allows the application of unmixing techniques. In this sense, a problem found by the traditional linear mixing model (LMM), a fully constrained least squared unmixing (FCLSU), is the lack of ability to account for spectral variability. This paper focuses on assessing the performance of different spectral unmixing models depending on the quality and quantity of endmembers. A complex mountainous ecosystem with high spectral changes was selected. Specifically, FCLSU and 3 approaches, which consider the spectral variability, were studied: scaled constrained least squares unmixing (SCLSU), Extended LMM (ELMM) and Robust ELMM (RELMM). The analysis includes two study cases: 1) robust endmembers and 2) nonrobust endmembers. Performances were computed using the reconstructed root-mean-square error (RMSE) and classification maps taking the abundances maps as inputs. It was demonstrated that advanced unmixing techniques are needed to address the spectral variability to get accurate abundances estimations. RELMM obtained excellent RMSE values and accurate classification maps with very little knowledge of the scene and minimum effort in the selection of endmembers, avoiding the curse of dimensionality problem found in HSI.


WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
来源期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99944
作者单位1.Univ Las Palmas Gran Canaria, Inst Oceanog & Cambio Global, Las Palmas Gran Canaria 35100, Spain;
2.UBL, Lab STICC, IMT Atlantique, F-29238 Brest, France;
3.ULPGC, Inst Oceanog & Cambio Global IOCAG, Parque Cient Tecnol Marino de Taliarte, Las Palmas Gran Canaria 35100, Spain;
4.Univ Politecn Madrid, Dept Comp Architecture & Technol, Campus Montegancedo, E-28660 Madrid, Spain;
5.Univ Grenoble Alpes, CNRS, Grenoble Inst Engn, Grenoble Images Speech Signals & Automat Lab GIPS, F-38000 Grenoble, France
推荐引用方式
GB/T 7714
Ibarrola-Ulzurrun, Edurne,Drumetz, Lucas,Marcello, Javier,et al. Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability[J],2019,57(7):4775-4788.
APA Ibarrola-Ulzurrun, Edurne,Drumetz, Lucas,Marcello, Javier,Gonzalo-Martin, Consuelo,&ChanussotO, Jocelyn.(2019).Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,57(7),4775-4788.
MLA Ibarrola-Ulzurrun, Edurne,et al."Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 57.7(2019):4775-4788.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ibarrola-Ulzurrun, Edurne]的文章
[Drumetz, Lucas]的文章
[Marcello, Javier]的文章
百度学术
百度学术中相似的文章
[Ibarrola-Ulzurrun, Edurne]的文章
[Drumetz, Lucas]的文章
[Marcello, Javier]的文章
必应学术
必应学术中相似的文章
[Ibarrola-Ulzurrun, Edurne]的文章
[Drumetz, Lucas]的文章
[Marcello, Javier]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。