CCPortal
DOI10.1002/joc.5911
Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods
Soares, P. M. M.1; Maraun, D.2; Brands, S.3; Jury, M. W.2; Gutierrez, J. M.4; San-Martin, D.5; Hertig, E.6; Huth, R.7,8; Vozila, A. Belusic9; Cardoso, Rita M.1; Kotlarski, S.10; Drobinski, P.11,12; Obermann-Hellhund, A.13
发表日期2019
ISSN0899-8418
EISSN1097-0088
卷号39期号:9页码:3868-3893
英文摘要

Statistical downscaling methods (SDMs) are techniques used to downscale and/or bias-correct climate model results to regional or local scales. The European network VALUE developed a framework to evaluate and inter-compare SDMs. One of VALUE's experiments is the perfect predictor experiment that uses reanalysis predictors to isolate downscaling skill. Most evaluation papers for SDMs employ simple statistical diagnostics and do not follow a process-based rationale. Thus, in this paper, a process-based evaluation has been conducted for the more than 40 participating model output statistics (MOS, mostly bias correction) and perfect prognosis (PP) methods, for temperature and precipitation at 86 weather stations across Europe. The SDMs are analysed following the so-called "regime-oriented" technique, focussing on relevant features of the atmospheric circulation at large to local scales. These features comprise the North Atlantic Oscillation, blocking and selected Lamb weather types and at local scales the bora wind and the western Iberian coastal-low level jet. The representation of the local weather response to the selected features depends strongly on the method class. As expected, MOS is unable to generate process sensitivity when it is not simulated by the predictors (ERA-Interim). Moreover, MOS often suffers from an inflation effect when a predictor is used for more than one station. The PP performance is very diverse and depends strongly on the implementation. Although conditioned on predictors that typically describe the large-scale circulation, PP often fails in capturing the process sensitivity correctly. Stochastic generalized linear models supported by well-chosen predictors show improved skill to represent the sensitivities.


WOS研究方向Meteorology & Atmospheric Sciences
来源期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99924
作者单位1.Univ Lisbon, Fac Ciencias, IDL, P-1749016 Lisbon, Portugal;
2.Karl Franzens Univ Graz, Wegener Ctr Climate & Global Change, Graz, Austria;
3.MeteoGalicia Conselleria Medio Ambiente & Ordenac, Santiago De Compostela, Spain;
4.Univ Cantabria, CSIC, Inst Fis Cantabria, Meteorol Grp, Cantabria, Spain;
5.Predictia Intelligent Data Solut, Santander, Spain;
6.Univ Augsburg, Inst Geog, Augsburg, Germany;
7.Charles Univ Prague, Fac Sci, Dept Phys Geog & Geoecol, Prague, Czech Republic;
8.Czech Acad Sci, Inst Atmospher Phys, Prague, Czech Republic;
9.Univ Zagreb, Fac Sci, Dept Geophys, Andrija Mohorovicic Geophys Inst, Zagreb, Croatia;
10.Fed Off Meteorol & Climatol MeteoSwiss, Zurich, Switzerland;
11.CNRS, LMD IPSL, Palaiseau, France;
12.Univ Paris Saclay, Ecole Polytech, Palaiseau, France;
13.Goethe Univ Frankfurt, Inst Atmosphare & Umwelt, Frankfurt, Germany
推荐引用方式
GB/T 7714
Soares, P. M. M.,Maraun, D.,Brands, S.,et al. Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods[J],2019,39(9):3868-3893.
APA Soares, P. M. M..,Maraun, D..,Brands, S..,Jury, M. W..,Gutierrez, J. M..,...&Obermann-Hellhund, A..(2019).Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods.INTERNATIONAL JOURNAL OF CLIMATOLOGY,39(9),3868-3893.
MLA Soares, P. M. M.,et al."Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods".INTERNATIONAL JOURNAL OF CLIMATOLOGY 39.9(2019):3868-3893.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Soares, P. M. M.]的文章
[Maraun, D.]的文章
[Brands, S.]的文章
百度学术
百度学术中相似的文章
[Soares, P. M. M.]的文章
[Maraun, D.]的文章
[Brands, S.]的文章
必应学术
必应学术中相似的文章
[Soares, P. M. M.]的文章
[Maraun, D.]的文章
[Brands, S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。