Climate Change Data Portal
DOI | 10.3390/f10070574 |
Comparing Primary and Secondary Growth of Co-Occurring Deciduous and Evergreen Conifers in an Alpine Habitat | |
Zhang, Yiping1; Jiang, Yuan2; Wen, Yan2; Ding, Xinyuan2; Wang, Biao2; Xu, Junliang1 | |
发表日期 | 2019 |
EISSN | 1999-4907 |
卷号 | 10期号:7 |
英文摘要 | Investigations on primary and secondary growth in co-occurring species will aid in assessment of the physiological adaptation of species and the prediction of forest stand structure dynamics. To explore the correlation and coordination between primary and secondary growth, we monitored the leaf phenology, shoot elongation, and stem growth of co-occurring Larix principis-rupprechtii Mayr. and Picea meyeri Rehd. et Wils. in an alpine habitat, Luya Mountain (North-Central China), during the growing season of 2014. We measured bud development on terminal branches three days per week by direct observations and intra-annual stem xylem formation at weekly intervals by the microcores method. The onset sequence of three organs was the needle, shoot, and stem, without species-specific differences. Needles appeared one month earlier than stem growth in larch, while it was only one week earlier in spruce. The duration of needle growth was the shortest, followed by the shoot and stem. The timing of primary growth (i.e., onset, end, and maximum growth rate) between the two species was asynchronous, but secondary growth was synchronic with the same date of the maximum growth rate occurrence, potentially indicating species competition for resources. Unlike larch, spruce staggered growth peaks among different organs, which may effectively mitigate trees' internal competition for resources. Soil temperature was positively correlated with both shoot and stem growth in the two species, whereas air temperature and soil water content were positively correlated with needle growth only in larch. Therefore, it can be inferred that the spruce will probably outcompete the larch at cold alpine treeline sites due to its high adaptability to acquiring and allocating resources. These results provide insight into the potential physiological correlation between primary and secondary growth and allow better prediction of future climate change effects on forest ecosystem productivity. |
WOS研究方向 | Forestry |
来源期刊 | FORESTS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/99704 |
作者单位 | 1.Henan Univ Sci & Technol, Coll Forestry, Luoyang 471003, Peoples R China; 2.Beijing Normal Univ, Beijing Key Lab Tradit Chinese Med Protect & Util, Fac Geog Sci, Beijing 100875, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Yiping,Jiang, Yuan,Wen, Yan,et al. Comparing Primary and Secondary Growth of Co-Occurring Deciduous and Evergreen Conifers in an Alpine Habitat[J],2019,10(7). |
APA | Zhang, Yiping,Jiang, Yuan,Wen, Yan,Ding, Xinyuan,Wang, Biao,&Xu, Junliang.(2019).Comparing Primary and Secondary Growth of Co-Occurring Deciduous and Evergreen Conifers in an Alpine Habitat.FORESTS,10(7). |
MLA | Zhang, Yiping,et al."Comparing Primary and Secondary Growth of Co-Occurring Deciduous and Evergreen Conifers in an Alpine Habitat".FORESTS 10.7(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。