CCPortal
DOI10.1002/ece3.5312
Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau
Su, Fanglong1; Wei, Yanan1; Wang, Fuwei1; Guo, Jiuxin1,2; Zhang, Juanjuan1; Wang, Yi3; Guo, Hui1; Hu, Shuijin1,4
发表日期2019
ISSN2045-7758
卷号9期号:13页码:7628-7638
英文摘要

Global warming and changes in precipitation patterns can critically influence the structure and productivity of terrestrial ecosystems. However, the underlying mechanisms are not fully understood. We conducted two independent but complementary experiments (one with warming and precipitation manipulation (+ or - 30%) and another with selective plant removal) in a semiarid grassland on the Loess Plateau, northwestern China, to assess how warming and altered precipitation affect plant community. Our results showed that warming and altered precipitation affected community aboveground net primary productivity (ANPP) through impacting soil moisture. Results of the removal experiment showed competitive relationships among dominant grasses, the dominant subshrub and nondominant species, which played a more important role than soil moisture in the response of plant community to warming and altered precipitation. Precipitation addition intensified the competition but primarily benefited the dominant subshrub. Warming and precipitation reduction enhanced water stresses but increased ANPP of the dominant subshrub and grasses, indicating that plant tolerance to drought critically meditated the community responses. These findings suggest that specie competitivity for water resources as well as tolerance to environmental stresses may dominate the responses of plant communities on the Loess Plateaus to future climate change factors.


WOS研究方向Environmental Sciences & Ecology ; Evolutionary Biology
来源期刊ECOLOGY AND EVOLUTION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99633
作者单位1.Nanjing Agr Univ, Coll Resources & Environm Sci, Ecosyst Ecol Lab, Nanjing 210095, Jiangsu, Peoples R China;
2.Fujian Agr & Forestry Univ, Coll Resources & Environm, Int Magnesium Inst, Fuzhou, Fujian, Peoples R China;
3.Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary, Xian, Shaanxi, Peoples R China;
4.North Carolina State Univ, Dept Entomol & Plant Pathol, Raleigh, NC 27695 USA
推荐引用方式
GB/T 7714
Su, Fanglong,Wei, Yanan,Wang, Fuwei,et al. Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau[J],2019,9(13):7628-7638.
APA Su, Fanglong.,Wei, Yanan.,Wang, Fuwei.,Guo, Jiuxin.,Zhang, Juanjuan.,...&Hu, Shuijin.(2019).Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau.ECOLOGY AND EVOLUTION,9(13),7628-7638.
MLA Su, Fanglong,et al."Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau".ECOLOGY AND EVOLUTION 9.13(2019):7628-7638.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su, Fanglong]的文章
[Wei, Yanan]的文章
[Wang, Fuwei]的文章
百度学术
百度学术中相似的文章
[Su, Fanglong]的文章
[Wei, Yanan]的文章
[Wang, Fuwei]的文章
必应学术
必应学术中相似的文章
[Su, Fanglong]的文章
[Wei, Yanan]的文章
[Wang, Fuwei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。