Climate Change Data Portal
DOI | 10.1029/2019PA003612 |
Endless Forams: > 34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks | |
Hsiang, Allison Y.1; Brombacher, Anieke2; Rillo, Marina C.2,3; Mleneck-Vautravers, Maryline J.4; Conn, Stephen5; Lordsmith, Sian5; Jentzen, Anna6; Henehan, Michael J.7; Metcalfe, Brett8,9; Fenton, Isabel S.10,11; Wade, Bridget S.12; Fox, Lyndsey3; Meilland, Julie13; Davis, Catherine, V14; Baranowskils, Ulrike15; Groeneveld, Jeroen16; Edgar, Kirsty M.15; Movellan, Aurore; Aze, Tracy17; Dowsett, Harry J.18; Miller, C. Giles3; Rios, Nelson19; Hull, Pincelli M.20 | |
发表日期 | 2019 |
ISSN | 2572-4517 |
EISSN | 2572-4525 |
卷号 | 34期号:7页码:1157-1177 |
英文摘要 | Planktonic foraminiferal species identification is central to many paleoceanographic studies, from selecting species for geochemical research to elucidating the biotic dynamics of microfossil communities relevant to physical oceanographic processes and interconnected phenomena such as climate change. However, few resources exist to train students in the difficult task of discerning amongst closely related species, resulting in diverging taxonomic schools that differ in species concepts and boundaries. This problem is exacerbated by the limited number of taxonomic experts. Here we document our initial progress toward removing these confounding and/or rate-limiting factors by generating the first extensive image library of modern planktonic foraminifera, providing digital taxonomic training tools and resources, and automating species-level taxonomic identification of planktonic foraminifera via machine learning using convolution neural networks. Experts identified 34,640 images of modern (extant) planktonic foraminifera to the species level. These images are served as species exemplars through the online portal Endless Forams (endlessforams. org) and a taxonomic training portal hosted on the citizen science platform Zooniverse (zooniverse. org/projects/ahsiang/endless-forams/). A supervised machine learning classifier was then trained with similar to 27,000 images of these identified planktonic foraminifera. The best-performing model provided the correct species name for an image in the validation set 87.4% of the time and included the correct name in its top three guesses 97.7% of the time. Together, these resources provide a rigorous set of training tools in modern planktonic foraminiferal taxonomy and a means of rapidly generating assemblage data via machine learning in future studies for applications such as paleotemperature reconstruction. |
WOS研究方向 | Geology ; Oceanography ; Paleontology |
来源期刊 | PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/99469 |
作者单位 | 1.Swedish Museum Nat Hist, Dept Bioinformat & Genet, Stockholm, Sweden; 2.Univ Southampton, Natl Oceanog Ctr Southampton, Sch Ocean & Earth Sci, Southampton, Hants, England; 3.Nat Hist Museum, Dept Earth Sci, London, England; 4.Univ Cambridge, Dept Earth Sci, Godwin Lab Paleoclimate Res, Cambridge, England; 5.Cardiff Univ, Sch Earth & Ocean Sci, Cardiff, S Glam, Wales; 6.Max Planck Inst Chem, Dept Climate Geochem, Mainz, Germany; 7.GFZ German Res Ctr Geosci, Potsdam, Germany; 8.Univ Paris Saclay, CEA CNRS UVSQ, LSCE IPSL, Lab Sci Climat & Environm, Paris, France; 9.Vrije Univ Amsterdam, Fac Sci, Dept Earth Sci, Earth & Climate Cluster, Amsterdam, Netherlands; 10.Nat Hist Museum, Dept Life Sci, London, England; 11.Univ Oxford, Dept Earth Sci, Oxford, England; 12.UCL, Dept Earth Sci, London, England; 13.Univ Bremen, MARUM, Leobener Str 8, Bremen, Germany; 14.Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA; 15.Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England; 16.Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany; 17.Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England; 18.US Geol Survey, Florence Bascom Geosci Ctr, 959 Natl Ctr, Reston, VA 22092 USA; 19.Yale Univ, Peabody Museum Nat Hist, Biodivers Informat & Data Sci, New Haven, CT USA; 20.Yale Univ, Dept Geol & Geophys, New Haven, CT USA |
推荐引用方式 GB/T 7714 | Hsiang, Allison Y.,Brombacher, Anieke,Rillo, Marina C.,et al. Endless Forams: > 34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks[J],2019,34(7):1157-1177. |
APA | Hsiang, Allison Y..,Brombacher, Anieke.,Rillo, Marina C..,Mleneck-Vautravers, Maryline J..,Conn, Stephen.,...&Hull, Pincelli M..(2019).Endless Forams: > 34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks.PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY,34(7),1157-1177. |
MLA | Hsiang, Allison Y.,et al."Endless Forams: > 34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks".PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 34.7(2019):1157-1177. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。