CCPortal
DOI10.1016/j.scitotenv.2019.03.248
Simulation of watershed-scale practices for mitigating stream thermal pollution due to urbanization
Ketabchy, Mehdi1,2; Sample, David J.1; Wynn-Thompson, Theresa1; Yazdi, Mohammad Nayeb1
发表日期2019
ISSN0048-9697
EISSN1879-1026
卷号671页码:215-231
英文摘要

Thermally enriched runoff from urban impervious surfaces can be harmful to aquatic life; however, only limited information is available on how to mitigate these impacts at the watershed-scale. This study evaluates the effects of retrofitting an urban watershed with thermal mitigation practices (TMPs) relative to thermal toxicity thresholds for aquatic species. The Minnesota Urban Heat Export Tool (MINUHET) and Storm Water Management Model (SWMM) models were used to evaluate TMPs that help reduce temperature and total heat loads (THL) from the Stroubles Creek watershed in Blacksburg, Virginia. We used the aquatic health criteria for brook trout (Salvelinus fontinalis), the most sensitive species present downstream of the watershed, as a performance measure. TMPs included bioretention systems, methods for reducing the albedo of surfaces (cool surfaces), and increasing forest canopy. Performance metrics included Event Mean Temperature (EMT), and the Percentage of Time Temperature Exceeded the 21 degrees C Acute Toxicity Threshold [Percentage of Time above the Threshold (PTAT)] for brook trout; these metrics were used to quantify reductions in heat loads and temperatures. TMPs were evaluated during continuous simulation and selected storm events. Increased forest canopy alone produced the greatest reduction of stream temperature, as quantified by EMT and PTAT metrics during continuous and event-based simulations. In contrast, cool surfaces reduced THL more than any other individual TMP for the continuous simulation. A comprehensive mitigation plan (CMP) integrating all three TMPs reduced THL by 62.3%, and PTAT by approximately 12%, for the entire summer of 2015. The CMP was also applied to select storm events, during which streamflow EMT was reduced up to 9%, and PTAT was reduced nearly to zero. This study, which is the first to simulate watershed-scale TMPs for a large, complex urban area, demonstrates the application of appropriate strategies for restoring aquatic habitats in the thermally impacted Stroubles Creek. (C) 2019 Elsevier B.V. All rights reserved.


WOS研究方向Environmental Sciences & Ecology
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99278
作者单位1.Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA;
2.Gannett Fleming Inc, Transportat Business Line, Fairfax, VA USA
推荐引用方式
GB/T 7714
Ketabchy, Mehdi,Sample, David J.,Wynn-Thompson, Theresa,et al. Simulation of watershed-scale practices for mitigating stream thermal pollution due to urbanization[J],2019,671:215-231.
APA Ketabchy, Mehdi,Sample, David J.,Wynn-Thompson, Theresa,&Yazdi, Mohammad Nayeb.(2019).Simulation of watershed-scale practices for mitigating stream thermal pollution due to urbanization.SCIENCE OF THE TOTAL ENVIRONMENT,671,215-231.
MLA Ketabchy, Mehdi,et al."Simulation of watershed-scale practices for mitigating stream thermal pollution due to urbanization".SCIENCE OF THE TOTAL ENVIRONMENT 671(2019):215-231.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ketabchy, Mehdi]的文章
[Sample, David J.]的文章
[Wynn-Thompson, Theresa]的文章
百度学术
百度学术中相似的文章
[Ketabchy, Mehdi]的文章
[Sample, David J.]的文章
[Wynn-Thompson, Theresa]的文章
必应学术
必应学术中相似的文章
[Ketabchy, Mehdi]的文章
[Sample, David J.]的文章
[Wynn-Thompson, Theresa]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。