CCPortal
DOI10.1371/journal.pone.0218165
Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning
Delancey, Evan Ross1; Kariyeva, Jahan1; Bried, Jason T.1,3; Hird, Jennifer N.2
发表日期2019
ISSN1932-6203
卷号14期号:6
英文摘要

Freely-available satellite data streams and the ability to process these data on cloud-computing platforms such as Google Earth Engine have made frequent, large-scale landcover mapping at high resolution a real possibility. In this paper we apply these technologies, along with machine learning, to the mapping of peatlands-a landcover class that is critical for preserving biodiversity, helping to address climate change impacts, and providing ecosystem services, e.g., carbon storage-in the Boreal Forest Natural Region of Alberta, Canada. We outline a data-driven, scientific framework that: compiles large amounts of Earth observation data sets (radar, optical, and LiDAR); examines the extracted variables for suitability in peatland modelling; optimizes model parameterization; and finally, predicts peatland occurrence across a large boreal area (397, 958 km(2)) of Alberta at 10 m spatial resolution (equalling 3.9 billion pixels across Alberta). The resulting peatland occurrence model shows an accuracy of 87% and a kappa statistic of 0.57 when compared to our validation data set. Differentiating peatlands from mineral wetlands achieved an accuracy of 69% and kappa statistic of 0.37. This data-driven approach is applicable at large geopolitical scales (e.g., provincial, national) for wetland and landcover inventories that support long-term, responsible resource management.


WOS研究方向Science & Technology - Other Topics
来源期刊PLOS ONE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99195
作者单位1.Univ Alberta, Alberta Biodivers Monitoring Inst, Edmonton, AB, Canada;
2.Univ Calgary, Dept Geog, Calgary, AB, Canada;
3.Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
推荐引用方式
GB/T 7714
Delancey, Evan Ross,Kariyeva, Jahan,Bried, Jason T.,et al. Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning[J],2019,14(6).
APA Delancey, Evan Ross,Kariyeva, Jahan,Bried, Jason T.,&Hird, Jennifer N..(2019).Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning.PLOS ONE,14(6).
MLA Delancey, Evan Ross,et al."Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning".PLOS ONE 14.6(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Delancey, Evan Ross]的文章
[Kariyeva, Jahan]的文章
[Bried, Jason T.]的文章
百度学术
百度学术中相似的文章
[Delancey, Evan Ross]的文章
[Kariyeva, Jahan]的文章
[Bried, Jason T.]的文章
必应学术
必应学术中相似的文章
[Delancey, Evan Ross]的文章
[Kariyeva, Jahan]的文章
[Bried, Jason T.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。