Climate Change Data Portal
DOI | 10.5194/essd-11-823-2019 |
Generating a rule-based global gridded tillage dataset | |
Porwollik, Vera1; Rolinski, Susanne; Heinke, Jens; Mueller, Christoph | |
发表日期 | 2019 |
ISSN | 1866-3508 |
EISSN | 1866-3516 |
卷号 | 11期号:2页码:823-843 |
英文摘要 | Tillage is a central element in agricultural soil management and has direct and indirect effects on processes in the biosphere. Effects of agricultural soil management can be assessed by soil, crop, and ecosystem models, but global assessments are hampered by lack of information on the type of tillage and their spatial distribution. This study describes the generation of a classification of tillage practices and presents the spatially explicit mapping of these crop-specific tillage systems for around the year 2005. Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose within the cropping systems. We classified the broad variety of globally relevant tillage practices into six categories: no-tillage in the context of Conservation Agriculture, traditional annual, traditional rotational, rotational, reduced, and conventional annual tillage. The identified tillage systems were allocated to gridded crop-specific cropland areas with a resolution of 5 arcmin. Allocation rules were based on literature findings and combine area information on crop type, water management regime, field size, water erosion, income, and aridity. We scaled reported national Conservation Agriculture areas down to grid cells via a probability-based approach for 54 countries. We provide area estimates of the six tillage systems aggregated to global and country scale. We found that 8.67Mkm(2) of global cropland area was tilled intensively at least once a year, whereas the remaining 2.65Mkm(2) was tilled less intensely. Further, we identified 4.67Mkm(2) of cropland as an area where Conservation Agriculture could be expanded to under current conditions. The tillage classification enables the parameterization of different soil management practices in various kinds of model simulations. The crop-specific tillage dataset indicates the spatial distribution of soil management practices, which is a prerequisite to assess erosion, carbon sequestration potential, as well as water, and nutrient dynamics of cropland soils. The dynamic definition of the allocation rules and accounting for national statistics, such as the share of Conservation Agriculture per country, also allow for derivation of datasets for historical and future global soil management scenarios. The resulting tillage system dataset and source code are accessible via an open-data repository (DOIs:https://doi.org/10.5880/PIK.2019.009 and https://doi.org/10.5880/PIK.2019.010, Porwollik et al., 2019a, b). |
WOS研究方向 | Geology ; Meteorology & Atmospheric Sciences |
来源期刊 | EARTH SYSTEM SCIENCE DATA
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/99095 |
作者单位 | 1.Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany; 2.Leibniz Assoc, D-14412 Potsdam, Germany |
推荐引用方式 GB/T 7714 | Porwollik, Vera,Rolinski, Susanne,Heinke, Jens,et al. Generating a rule-based global gridded tillage dataset[J],2019,11(2):823-843. |
APA | Porwollik, Vera,Rolinski, Susanne,Heinke, Jens,&Mueller, Christoph.(2019).Generating a rule-based global gridded tillage dataset.EARTH SYSTEM SCIENCE DATA,11(2),823-843. |
MLA | Porwollik, Vera,et al."Generating a rule-based global gridded tillage dataset".EARTH SYSTEM SCIENCE DATA 11.2(2019):823-843. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。