CCPortal
DOI10.1029/2019PA003601
Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends
Greene, S. E.1; Ridgwell, A.2,3; Turner, S. Kirtland3; Schmidt, D. N.4; Palike, H.5; Thomas, E.6,7; Greene, L. K.8,9; Hoogakker, A. A.10
发表日期2019
ISSN2572-4517
EISSN2572-4525
卷号34期号:6页码:930-945
英文摘要

Our understanding of the long-term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2 and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long-term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long-term relationship between climate and carbon cycling. We generate a record of marine deep-sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 degrees C global warming, highlighting the need for additional deep-sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining delta C-13 and a relatively stable CCD can be broadly reproduced by mid-Paleogene increases in volcanic CO2 outgassing and weathering. However, remaining data-model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates.


Plain Language Summary Weathering, the breakdown of rocks at the Earth's surface, is widely assumed to act as Earth's thermostat, regulating the concentration of atmospheric carbon dioxide (CO2) and global temperatures. This is because (a) weathering consumes CO2 from the atmosphere and (b) weathering rates are thought to be greater at higher temperatures. One widely used proxy for reconstructing global weathering is the preservation of calcium carbonate (chalk) minerals in the deep ocean. From the late Paleocene to early Eocene, the planet warmed by more 3 degrees C, the biggest long-term global warming trend for which we have detailed records. It is still uncertain whether global weathering responded to this temperature increase. We reconstruct the preservation of deep-sea calcium carbonate across this warming and find little apparent change. We also use computer modeling to show that the relationship between global weathering and preservation of deep-sea calcium carbonate is highly nuanced. In sum, we are able to attribute the late Paleocene to early Eocene warming to an increase in CO2 emissions from volcanoes. We argue the resulting elevated temperatures did, in fact, cause an increase in global weathering, but that this is not readily apparent from our deep-sea calcium carbonate proxy.


WOS研究方向Geology ; Oceanography ; Paleontology
来源期刊PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/98914
作者单位1.Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England;
2.Univ Bristol, Sch Geog Sci, BRIDGE, Bristol, Avon, England;
3.Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA;
4.Univ Bristol, Sch Earth Sci, Bristol, Avon, England;
5.Univ Bremen, MARUM Ctr Marine Environm Sci, Bremen, Germany;
6.Yale Univ, Dept Geol & Geophys, New Haven, CT USA;
7.Wesleyan Univ, Dept Earth & Environm Sci, Middletown, CT USA;
8.Duke Univ, Univ Program Ecol, Durham, NC USA;
9.Duke Univ, Dept Evolutionary Anthropol, Durham, NC USA;
10.Heriot Watt Univ, Inst Life & Earth Sci, Edinburgh, Midlothian, Scotland
推荐引用方式
GB/T 7714
Greene, S. E.,Ridgwell, A.,Turner, S. Kirtland,et al. Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends[J],2019,34(6):930-945.
APA Greene, S. E..,Ridgwell, A..,Turner, S. Kirtland.,Schmidt, D. N..,Palike, H..,...&Hoogakker, A. A..(2019).Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends.PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY,34(6),930-945.
MLA Greene, S. E.,et al."Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends".PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 34.6(2019):930-945.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Greene, S. E.]的文章
[Ridgwell, A.]的文章
[Turner, S. Kirtland]的文章
百度学术
百度学术中相似的文章
[Greene, S. E.]的文章
[Ridgwell, A.]的文章
[Turner, S. Kirtland]的文章
必应学术
必应学术中相似的文章
[Greene, S. E.]的文章
[Ridgwell, A.]的文章
[Turner, S. Kirtland]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。