CCPortal
DOI10.1111/1752-1688.12733
Streamflow Forecasting Using Singular Value Decomposition and Support Vector Machine for the Upper Rio Grande River Basin
Bhandari, Swastik1; Thakur, Balbhadra1; Kalra, Ajay1; Miller, William P.2; Lakshmi, Venkat3; Pathak, Pratik4
发表日期2019
ISSN1093-474X
EISSN1752-1688
卷号55期号:3页码:680-699
英文摘要

The current study improves streamflow forecast lead-time by coupling climate information in a data-driven modeling framework. The spatial-temporal correlation between streamflow and oceanic-atmospheric variability represented by sea surface temperature (SST), 500-mbar geopotential height (Z(500)), 500-mbar specific humidity (SH500), and 500-mbar east-west wind (U-500) of the Pacific and the Atlantic Ocean is obtained through singular value decomposition (SVD). SVD significant regions are weighted using a nonparametric method and utilized as input in a support vector machine (SVM) framework. The Upper Rio Grande River Basin (URGRB) is selected to test the applicability of the proposed model for the period of 1965-2014. The April-August streamflow volume is forecasted using previous year climate variability, creating a lagged relationship of 1-13 months. SVD results showed the streamflow variability was better explained by SST and U-500 as compared to Z(500) and SH500. The SVM model showed satisfactory forecasting ability with best results achieved using a one-month lead to forecast the following four-month period. Overall, the SVM results showed excellent predictive ability with average correlation coefficient of 0.89 and Nash-Sutcliffe efficiency of 0.79. This study contributes toward identifying new SVD significant regions and improving streamflow forecast lead-time of the URGRB.


WOS研究方向Engineering ; Geology ; Water Resources
来源期刊JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/98610
作者单位1.Southern Illinois Univ Carbondale, Dept Civil & Environm Engn, Carbondale, IL 62901 USA;
2.NOAA Colorado Basin River Forecast Ctr, Weather Forecast, Salt Lake City, UT USA;
3.Univ Virginia, Dept Engn Syst & Environm, Charlottesville, VA USA;
4.WOOD PLC, Water Resources, Chantilly, VA USA
推荐引用方式
GB/T 7714
Bhandari, Swastik,Thakur, Balbhadra,Kalra, Ajay,et al. Streamflow Forecasting Using Singular Value Decomposition and Support Vector Machine for the Upper Rio Grande River Basin[J],2019,55(3):680-699.
APA Bhandari, Swastik,Thakur, Balbhadra,Kalra, Ajay,Miller, William P.,Lakshmi, Venkat,&Pathak, Pratik.(2019).Streamflow Forecasting Using Singular Value Decomposition and Support Vector Machine for the Upper Rio Grande River Basin.JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION,55(3),680-699.
MLA Bhandari, Swastik,et al."Streamflow Forecasting Using Singular Value Decomposition and Support Vector Machine for the Upper Rio Grande River Basin".JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 55.3(2019):680-699.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bhandari, Swastik]的文章
[Thakur, Balbhadra]的文章
[Kalra, Ajay]的文章
百度学术
百度学术中相似的文章
[Bhandari, Swastik]的文章
[Thakur, Balbhadra]的文章
[Kalra, Ajay]的文章
必应学术
必应学术中相似的文章
[Bhandari, Swastik]的文章
[Thakur, Balbhadra]的文章
[Kalra, Ajay]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。