CCPortal
DOI10.1177/0309133319837711
Urban climate zone classification using convolutional neural network and ground-level images
Xu, Guang1; Zhu, Xuan1; Tapper, Nigel1; Bechtel, Benjamin2
发表日期2019
ISSN0309-1333
EISSN1477-0296
卷号43期号:3页码:410-424
英文摘要

Urban climate risks have a wide range of impacts on the health of more than 50% of the world's population, which is a critical issue relating to climate change. To support urban climate study and categorise different urban environments and their atmospheric impacts in a consistent way, the Local Climate Zone (LCZ) classification scheme has been developed. The World Urban Database and Access Portal Tools project aims to map the LCZ of cities across the globe. However, previous classification approaches based on satellite images have limitations regarding the characterisation of three-dimensional features such as building heights. This study aims to apply convolutional neural networks to classify LCZ types based on ground-level images, which can provide more detail of the urban environments. Validation results have shown an overall accuracy of 69.6%. The new method outperformed previous satellite-based studies for classifying the LCZ types Compact Mid-rise, Sparsely Built, Heavy Industry, and Bare Rock or Paved.


WOS研究方向Physical Geography ; Geology
来源期刊PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/98607
作者单位1.Monash Univ, 9 Rainforest Walk,Clayton Campus, Melbourne, Vic 3800, Australia;
2.Univ Hamburg, Hamburg, Germany
推荐引用方式
GB/T 7714
Xu, Guang,Zhu, Xuan,Tapper, Nigel,et al. Urban climate zone classification using convolutional neural network and ground-level images[J],2019,43(3):410-424.
APA Xu, Guang,Zhu, Xuan,Tapper, Nigel,&Bechtel, Benjamin.(2019).Urban climate zone classification using convolutional neural network and ground-level images.PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT,43(3),410-424.
MLA Xu, Guang,et al."Urban climate zone classification using convolutional neural network and ground-level images".PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT 43.3(2019):410-424.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Guang]的文章
[Zhu, Xuan]的文章
[Tapper, Nigel]的文章
百度学术
百度学术中相似的文章
[Xu, Guang]的文章
[Zhu, Xuan]的文章
[Tapper, Nigel]的文章
必应学术
必应学术中相似的文章
[Xu, Guang]的文章
[Zhu, Xuan]的文章
[Tapper, Nigel]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。