Climate Change Data Portal
DOI | 10.3390/atmos10060308 |
Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California | |
Koman, Patricia D.1; Billmire, Michael2; Baker, Kirk R.3; de Majo, Ricardo4; Anderson, Frank J.5; Hoshiko, Sumi6; Thelen, Brian J.2; French, Nancy H. F.2 | |
发表日期 | 2019 |
ISSN | 2073-4433 |
卷号 | 10期号:6 |
英文摘要 | Wildland fire smoke exposure affects a broad proportion of the U.S. population and is increasing due to climate change, settlement patterns and fire seclusion. Significant public health questions surrounding its effects remain, including the impact on cardiovascular disease and maternal health. Using atmospheric chemical transport modeling, we examined general air quality with and without wildland fire smoke PM2.5. The 24-h average concentration of PM2.5 from all sources in 12-km gridded output from all sources in California (2007-2013) was 4.91 mu g/m(3). The average concentration of fire-PM2.5 in California by year was 1.22 mu g/m(3) (25% of total PM2.5). The fire-PM2.5 daily mean was estimated at 4.40 mu g/m(3) in a high fire year (2008). Based on the model-derived fire-PM2.5 data, 97.4% of California's population lived in a county that experienced at least one episode of high smoke exposure (smokewave) from 2007-2013. Photochemical model predictions of wildfire impacts on daily average PM2.5 carbon (organic and elemental) compared to rural monitors in California compared well for most years but tended to over-estimate wildfire impacts for 2008 (2.0 mu g/m(3) bias) and 2013 (1.6 mu g/m(3) bias) while underestimating for 2009 (-2.1 mu g/m(3) bias). The modeling system isolated wildfire and PM2.5 from other sources at monitored and unmonitored locations, which is important for understanding population exposure in health studies. Further work is needed to refine model predictions of wildland fire impacts on air quality in order to increase confidence in the model for future assessments. Atmospheric modeling can be a useful tool to assess broad geographic scale exposure for epidemiologic studies and to examine scenario-based health impacts. |
WOS研究方向 | Meteorology & Atmospheric Sciences |
来源期刊 | ATMOSPHERE
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/98463 |
作者单位 | 1.Univ Michigan, Sch Publ Hlth, Environm Hlth Sci, Ann Arbor, MI 48109 USA; 2.Michigan Technol Univ, Michigan Tech Res Inst, Ann Arbor, MI 48105 USA; 3.US EPA, Off Air Qual Planning & Stand, Off Air & Radiat, Res Triangle Pk, NC 27709 USA; 4.Univ Michigan, Sch Publ Hlth, Hlth Behav Hlth Educ, Ann Arbor, MI 48109 USA; 5.Univ Michigan, Sch Med, Obstet & Gynecol, Ann Arbor, MI 48109 USA; 6.Calif Dept Publ Hlth, Environm Hlth Invest Branch, Richmond, CA 94804 USA |
推荐引用方式 GB/T 7714 | Koman, Patricia D.,Billmire, Michael,Baker, Kirk R.,et al. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California[J],2019,10(6). |
APA | Koman, Patricia D..,Billmire, Michael.,Baker, Kirk R..,de Majo, Ricardo.,Anderson, Frank J..,...&French, Nancy H. F..(2019).Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California.ATMOSPHERE,10(6). |
MLA | Koman, Patricia D.,et al."Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California".ATMOSPHERE 10.6(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。