CCPortal
DOI10.1371/journal.pone.0214535
Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series
Olson, Roman1,2,3; An, Soon-Il1; Fan, Yanan4; Evans, Jason P.5,6
发表日期2019
ISSN1932-6203
卷号14期号:4
英文摘要

We present a novel quasi-Bayesian method to weight multiple dynamical models by their skill at capturing both potentially non-linear trends and first-order autocorrelated variability of the underlying process, and to make weighted probabilistic projections. We validate the method using a suite of one-at-a-time cross-validation experiments involving Atlantic meridional overturning circulation (AMOC), its temperature-based index, as well as Korean summer mean maximum temperature. In these experiments the method tends to exhibit superior skill over a trend-only Bayesian model averaging weighting method in terms of weight assignment and probabilistic forecasts. Specifically, mean credible interval width, and mean absolute error of the projections tend to improve. We apply the method to a problem of projecting summer mean maximum temperature change over Korea by the end of the 21 st century using a multi-model ensemble. Compared to the trend-only method, the new method appreciably sharpens the probability distribution function (pdf) and increases future most likely, median, and mean warming in Korea. The method is flexible, with a potential to improve forecasts in geosciences and other fields.


WOS研究方向Science & Technology - Other Topics
来源期刊PLOS ONE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/96388
作者单位1.Yonsei Univ, Dept Atmospher Sci, Seoul, South Korea;
2.Inst Basic Sci, Ctr Climate Phys, Busan, South Korea;
3.Pusan Natl Univ, Busan, South Korea;
4.UNSW Australia, Sch Math & Stat, Sydney, NSW, Australia;
5.UNSW Australia, Climate Change Res Ctr, Sydney, NSW, Australia;
6.UNSW Australia, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
推荐引用方式
GB/T 7714
Olson, Roman,An, Soon-Il,Fan, Yanan,et al. Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series[J],2019,14(4).
APA Olson, Roman,An, Soon-Il,Fan, Yanan,&Evans, Jason P..(2019).Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series.PLOS ONE,14(4).
MLA Olson, Roman,et al."Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series".PLOS ONE 14.4(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Olson, Roman]的文章
[An, Soon-Il]的文章
[Fan, Yanan]的文章
百度学术
百度学术中相似的文章
[Olson, Roman]的文章
[An, Soon-Il]的文章
[Fan, Yanan]的文章
必应学术
必应学术中相似的文章
[Olson, Roman]的文章
[An, Soon-Il]的文章
[Fan, Yanan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。