Climate Change Data Portal
DOI | 10.1111/geb.12866 |
Vegetation type controls root turnover in global grasslands | |
Wang, Jinsong1; Sun, Jian1; Yu, Zhen2; Li, Yong3; Tian, Dashuan1; Wang, Bingxue1; Li, Zhaolei1; Niu, Shuli1,4 | |
发表日期 | 2019 |
ISSN | 1466-822X |
EISSN | 1466-8238 |
卷号 | 28期号:4页码:442-455 |
英文摘要 | Aim Root turnover is an important process determining carbon and nutrient cycling in terrestrial ecosystems. It is an established fact that root turnover is jointly regulated by climatic, edaphic and biotic factors. However, the relative importance of these forces in determining the global patterns of root turnover time is far from clear. Location Global. Time period 1946-2017. Major taxa studied Grasslands. Methods We compiled a database of 141 sites with 433 observations on root turnover time and applied structural equation modelling (SEM) to investigate the relative contribution of climate, soil properties and vegetation type to the observed variations in root turnover time. Results Root turnover time was 3.1 years on average across the global grasslands and differed significantly among grassland types (tropical grassland and savanna, temperate grassland and meadow, alpine grassland and meadow, tundra and desert). It decreased with mean annual temperature, mean annual precipitation and Palmer drought severity index but increased with soil organic carbon content, total nitrogen content and carbon : nitrogen ratio. Soil bulk density and soil texture also significantly affected root turnover time, with clay content negatively correlating to root turnover time and explaining more variations than bulk density and sand content. The SEM showed that climatic factors had dominant effects on root turnover time when vegetation type was not considered. Vegetation type became the primary driver when it was included in the SEM. Main conclusions Our results indicate that the influences of climatic and edaphic factors on root turnover time are predominantly manifested through vegetation type. The critical role of precipitation as revealed for the first time in this study challenges our current understanding of climate impacts on root turnover time. The findings necessitate accurate representation of vegetation type in Earth system models to predict root function dynamics under global change. |
WOS研究方向 | Environmental Sciences & Ecology ; Physical Geography |
来源期刊 | GLOBAL ECOLOGY AND BIOGEOGRAPHY |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/96193 |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing, Peoples R China; 2.Iowa State Univ, Dept Ecol Evolut & Organismal Biol EEOB, Ames, IA USA; 3.Res Chinese Acad Forestry, Beijing Key Lab Wetland Serv & Restorat, Inst Wetland, Beijing, Peoples R China; 4.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Jinsong,Sun, Jian,Yu, Zhen,et al. Vegetation type controls root turnover in global grasslands[J],2019,28(4):442-455. |
APA | Wang, Jinsong.,Sun, Jian.,Yu, Zhen.,Li, Yong.,Tian, Dashuan.,...&Niu, Shuli.(2019).Vegetation type controls root turnover in global grasslands.GLOBAL ECOLOGY AND BIOGEOGRAPHY,28(4),442-455. |
MLA | Wang, Jinsong,et al."Vegetation type controls root turnover in global grasslands".GLOBAL ECOLOGY AND BIOGEOGRAPHY 28.4(2019):442-455. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。