CCPortal
DOI10.1016/j.scitotenv.2018.12.217
Assessment of urban flood susceptibility using semi-supervised machine learning model
Zhao, Gang1,2,3; Pang, Bo1,2; Xu, Zongxue1,2; Peng, Dingzhi1,2; Xu, Liyang4
发表日期2019
ISSN0048-9697
EISSN1879-1026
卷号659页码:940-949
英文摘要

In order to identify flood-prone areas with limited flood inventories, a semi-supervised machine learning model -the weakly labeled support vector machine (WELLSVM)-is used to assess urban flood susceptibility in this study. A spatial database is collected from metropolitan areas in Beijing, including flood inventories from 2004 to 2014 and nine metrological, geographical, and anthropogenic explanatory factors. Urban flood susceptibility is mapped and compared using logistic regression, artificial neural networks, and a support vector machine. Model performances are evaluated using four evaluation indices (accuracy, precision, recall, and F-score) as well as the receiver operating characteristic curve. The results show that WELLSVM can better utilize the spatial information (unlabeled data), and it outperforms all comparison models. The high-quality WELLSVM flood susceptibility map is thus applicable to efficient urban flood management. (c) 2018 Elsevier B.V. All rights reserved.


WOS研究方向Environmental Sciences & Ecology
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/96100
作者单位1.Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China;
2.Beijing Key Lab Urban Hydrol Cycle & Sponge City, Beijing 100875, Peoples R China;
3.Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England;
4.Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Gang,Pang, Bo,Xu, Zongxue,et al. Assessment of urban flood susceptibility using semi-supervised machine learning model[J],2019,659:940-949.
APA Zhao, Gang,Pang, Bo,Xu, Zongxue,Peng, Dingzhi,&Xu, Liyang.(2019).Assessment of urban flood susceptibility using semi-supervised machine learning model.SCIENCE OF THE TOTAL ENVIRONMENT,659,940-949.
MLA Zhao, Gang,et al."Assessment of urban flood susceptibility using semi-supervised machine learning model".SCIENCE OF THE TOTAL ENVIRONMENT 659(2019):940-949.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Gang]的文章
[Pang, Bo]的文章
[Xu, Zongxue]的文章
百度学术
百度学术中相似的文章
[Zhao, Gang]的文章
[Pang, Bo]的文章
[Xu, Zongxue]的文章
必应学术
必应学术中相似的文章
[Zhao, Gang]的文章
[Pang, Bo]的文章
[Xu, Zongxue]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。