Climate Change Data Portal
DOI | 10.3390/w11040746 |
Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula | |
Wen, Tianfu1,2; Jiang, Cong3; Xu, Xinfa2 | |
发表日期 | 2019 |
ISSN | 2073-4441 |
卷号 | 11期号:4 |
英文摘要 | Nonstationarity of univariate flood series has been widely studied, while nonstationarity of some multivariate flood series, such as discharge, water stage, and suspended sediment concentrations, has been studied rarely. This paper presents a procedure for using the time-varying copula model to describe the nonstationary dependence structures of two correlated flood variables from the same flood event. In this study, we focus on multivariate flood event consisting of peak discharge (Q), peak water stage (Z) and suspended sediment load (S) during the period of 1964-2013 observed at the Waizhou station in the Ganjiang River, China. The time-varying copula model is employed to analyze bivariate distributions of two flood pairs of (Z-Q) and (Z-S). The main channel elevation (MCE) and the forest coverage rate (FCR) of the basin are introduced as the candidate explanatory variables for modelling the nonstationarities of both marginal distributions and dependence structure of copula. It is found that the marginal distributions for both Z and S are nonstationary, whereas the marginal distribution for Q is stationary. In particular, the mean of Z is related to MCE, and the mean and variance of S are related to FCR. Then, time-varying Frank copula with MCE as the covariate has the best performance in fitting the dependence structures of both Z-Q and Z-S. It is indicated that the dependence relationships are strengthen over time associated with the riverbed down-cutting. Finally, the joint and conditional probabilities of both Z-Q and Z-S obtained from the best fitted bivariate copula indicate that there are obvious nonstationarity of their bivariate distributions. This work is helpful to understand how human activities affect the bivariate flood distribution, and therefore provides supporting information for hydraulic structure designs under the changing environments. |
WOS研究方向 | Water Resources |
来源期刊 | WATER
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/95644 |
作者单位 | 1.Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China; 2.Jiangxi Prov Inst ofWater Sci, Nanchang 310029, Jiangxi, Peoples R China; 3.China Univ Geosci, Sch Environm Studies, Wuhan 430074, Hubei, Peoples R China |
推荐引用方式 GB/T 7714 | Wen, Tianfu,Jiang, Cong,Xu, Xinfa. Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula[J],2019,11(4). |
APA | Wen, Tianfu,Jiang, Cong,&Xu, Xinfa.(2019).Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula.WATER,11(4). |
MLA | Wen, Tianfu,et al."Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula".WATER 11.4(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。