Climate Change Data Portal
DOI | 10.3390/w11040841 |
Identifying Optimal Irrigation Water Needs at District Scale by Using a Physically Based Agro-Hydrological Model | |
Coppola, Antonio1; Dragonetti, Giovanna2; Sengouga, Asma2; Lamaddalena, Nicola2; Comegna, Alessandro1; Basile, Angelo3; Noviello, Nicoletta4; Nardella, Luigi4 | |
发表日期 | 2019 |
ISSN | 2073-4441 |
卷号 | 11期号:4 |
英文摘要 | This paper mainly aims to illustrate an irrigation management tool to simulate scheduling of district-level water needs over the course of an irrigation season. The tool is mostly based on a daily model for simulating flow of water (and solutes) in heterogeneous agri-environmental systems (called FLOWS-HAGES). The model produces information on the daily evolution of: soil water contents and pressure potentials in the soil profile; water uptake and actual evapotranspiration; stress periods for each crop; return fluxes to the groundwater and their quality in terms of solute concentrations (e.g., nitrates). FLOWS-HAGES provides a daily list of hydrants to be operated according to water or crop-based criteria. The daily optimal sequence of hydrant use may thus be established by passing the volumes to be delivered on to the model for simulating the hydraulics of the irrigation network, in order to ensure that the discharges flowing inside the network of distribution pipes are delivered under optimal pressure head distribution in the system. All the above evaluations can be carried out in a stochastic framework to account for soil heterogeneity and climate changes. To illustrate the potential of FLOWS-HAGES, a case study was considered for a selected sector of the Irrigation District 10 in the Sinistra Ofanto irrigation system (southern Italy, Apulia region). In a 139 ha area (Sector 6 of the Irrigation District), soil profiles were analyzed for characterization of hydraulic properties variability. Hydraulic properties were determined by a combination of field and laboratory measurements. Model simulations were validated by comparing soil water storage simulated and measured by a sensor based on electromagnetic induction technique. Irrigation water volumes and frequency calculated by the model were compared to the volumes actually supplied by the farmers. Compared to the farmers behavior, the model simulates more frequent irrigations with lower irrigation volumes. Finally, some indexes of irrigation performance were calculated for each farm under study. The resulting maps provide useful information on the spatial distribution of farmer behavior, indicating the abuse or underuse of water as well as the fraction of the water lost by drainage following the irrigation method applied. |
WOS研究方向 | Water Resources |
来源期刊 | WATER |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/95638 |
作者单位 | 1.Univ Basilicata, Sch Agr Forestry Food & Environm Sci SAFE, Viale Ateneo Lucano 10, I-85100 Potenza, PZ, Italy; 2.IAMB, Land & Water Div, Mediterranean Agron Inst, I-70010 Valenzano, BA, Italy; 3.Natl Council Res CNR, Inst Mediterranean Agr & Forestry Syst ISAFOM, I-80056 Naples, NA, Italy; 4.Consorzio Bonifica Capitanata, I-71121 Foggia, FG, Italy |
推荐引用方式 GB/T 7714 | Coppola, Antonio,Dragonetti, Giovanna,Sengouga, Asma,et al. Identifying Optimal Irrigation Water Needs at District Scale by Using a Physically Based Agro-Hydrological Model[J],2019,11(4). |
APA | Coppola, Antonio.,Dragonetti, Giovanna.,Sengouga, Asma.,Lamaddalena, Nicola.,Comegna, Alessandro.,...&Nardella, Luigi.(2019).Identifying Optimal Irrigation Water Needs at District Scale by Using a Physically Based Agro-Hydrological Model.WATER,11(4). |
MLA | Coppola, Antonio,et al."Identifying Optimal Irrigation Water Needs at District Scale by Using a Physically Based Agro-Hydrological Model".WATER 11.4(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。