CCPortal
DOI10.3390/w11040780
Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models
Fuentes, Ignacio; Padarian, Jose; van Ogtrop, Floris; Vervoort, R. Willem
发表日期2019
ISSN2073-4441
卷号11期号:4
英文摘要

Uncertainty about global change requires alternatives to quantify the availability of water resources and their dynamics. A methodology based on different satellite imagery and surface elevation models to estimate surface water volumes would be useful to monitor flood events and reservoir storages. In this study, reservoirs with associated digital terrain models (DTM) and continuously monitored volumes were selected. The inundated extent was based on a supervised classification using surface reflectance in Landsat 5 images. To estimate associated water volumes, the DTMs were sampled at the perimeter of inundated areas and an inverse distance weighting interpolation was used to populate the water elevation inside the flooded polygons. The developed methodology (IDW) was compared against different published methodologies to estimate water volumes from digital elevation models, which assume either a flat water surface using the maximum elevation of inundated areas (Max), and a flat water surface using the median elevation of the perimeter of inundated areas (Median), or a tilted surface, where water elevations are based on an iterative focal maximum statistic with increasing window sizes (FwDET), and finally a tilted water surface obtained by replacing the focal maximum statistic from the FwDET methodology with a focal mean statistic (FwDET_mean). Volume estimates depend strongly on both water detection and the terrain model. The Max and the FwDET methodologies are highly affected by the water detection step, and the FwDET_mean methodology leads to lower volume estimates due to the iterative smoothing of elevations, which also tends to be computationally expensive for big areas. The Median and IDW methodologies outperform the rest of the methods, and IDW can be used for both reservoir and flood volume monitoring. Different sources of error can be observed, being systematic errors associated with the DTM acquisition time and the reported volumes, which for example fail to consider dynamic sedimentation processes taking place in reservoirs. Resolution effects account for a fraction of errors, being mainly caused by terrain curvature.


WOS研究方向Water Resources
来源期刊WATER
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/95593
作者单位Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
推荐引用方式
GB/T 7714
Fuentes, Ignacio,Padarian, Jose,van Ogtrop, Floris,et al. Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models[J],2019,11(4).
APA Fuentes, Ignacio,Padarian, Jose,van Ogtrop, Floris,&Vervoort, R. Willem.(2019).Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models.WATER,11(4).
MLA Fuentes, Ignacio,et al."Comparison of Surface Water Volume Estimation Methodologies That Couple Surface Reflectance Data and Digital Terrain Models".WATER 11.4(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fuentes, Ignacio]的文章
[Padarian, Jose]的文章
[van Ogtrop, Floris]的文章
百度学术
百度学术中相似的文章
[Fuentes, Ignacio]的文章
[Padarian, Jose]的文章
[van Ogtrop, Floris]的文章
必应学术
必应学术中相似的文章
[Fuentes, Ignacio]的文章
[Padarian, Jose]的文章
[van Ogtrop, Floris]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。