Climate Change Data Portal
DOI | 10.3389/fmats.2019.00121 |
Short Term Exposure to Heat and Sediment Triggers Changes in Coral Gene Expression and Photo-Physiological Performance | |
Poquita-Du, Rosa Celia1,2,3; Huang, Danwei2,3; Chou, Loke Ming3; Mrinalini4; Todd, Peter A.1,3 | |
发表日期 | 2019 |
EISSN | 2296-7745 |
卷号 | 6 |
英文摘要 | Corals, together with their endosymbiotic Symbiodiniaceae, are known to exhibit a suite of mechanisms for survival under stressful conditions. However, exactly how the host animal responds to varying environmental conditions remains unclear. In this study, we tested two relevant environmental factors that can have deleterious effects on corals: heat and sediment. We examined among-genotype responses of Pocillopora acuta to these factors with RNA-Seq in concert with widely-used tools for assessing the physiological conditions of corals. Heat and sediment treatments were applied in a 2 x 2 crossed experimental design: (1) similar to 30 degrees C without sediment (control, "C"), (2) similar to 30 degrees C with sediment (sediment-only, "S"), (3) similar to 32 degrees C without sediment (heat-only, "H"), (4) similar to 32 degrees C with sediment (heat + sediment, "H+S") over four consecutive days (3-h daily exposure) in ex situ aquarium conditions. A clear differentiation in gene expression patterns was observed in corals exposed to heat alone and to heat with sediment, relative to the control treatment. Few transcripts (similar to 3) were found to be differentially expressed for corals exposed to sediment only. The greater impact of heat was supported by photo-physiological measurements that showed significant effects on maximum quantum yield and average symbiont density among genotypes of P acute. The combined effect of heat and sediment caused a greater reduction in average symbiont density than the effect of sediment alone. Furthermore, "H+S" disrupted the ability of corals to maintain processes involving assembly and disassembly of cilium which suggests a synergistic effect between the two factors. We also found that host-specific genes which were expressed differentially may not be related to their interactions with algal symbionts. Rather, these genes are involved in a variety of biological functions including, but not limited to, cilium biogenesis and degradation, cilia motility, innate and adaptive immune responses, cell adhesion and bone mineralization, and processes involved in the cell cycle. These results reflect the complex response of the host alone. Overall, our findings indicate that acute heat stress in tandem with sediment can depress photo-physiological performance and trigger considerable changes in host gene expression. |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology |
来源期刊 | FRONTIERS IN MARINE SCIENCE
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/95044 |
作者单位 | 1.Natl Univ Singapore, Dept Biol Sci, Expt Marine Ecol Lab, Singapore, Singapore; 2.Natl Univ Singapore, Dept Biol Sci, Reef Ecol Lab, Singapore, Singapore; 3.Natl Univ Singapore, Trop Marine Sci Inst, Singapore, Singapore; 4.Natl Univ Singapore, Evolutionary Biol Lab, Dept Biol Sci, Singapore, Singapore |
推荐引用方式 GB/T 7714 | Poquita-Du, Rosa Celia,Huang, Danwei,Chou, Loke Ming,et al. Short Term Exposure to Heat and Sediment Triggers Changes in Coral Gene Expression and Photo-Physiological Performance[J],2019,6. |
APA | Poquita-Du, Rosa Celia,Huang, Danwei,Chou, Loke Ming,Mrinalini,&Todd, Peter A..(2019).Short Term Exposure to Heat and Sediment Triggers Changes in Coral Gene Expression and Photo-Physiological Performance.FRONTIERS IN MARINE SCIENCE,6. |
MLA | Poquita-Du, Rosa Celia,et al."Short Term Exposure to Heat and Sediment Triggers Changes in Coral Gene Expression and Photo-Physiological Performance".FRONTIERS IN MARINE SCIENCE 6(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。