CCPortal
DOI10.1016/j.ecoinf.2018.12.010
Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam
An Thi Ngoc Dang1; Nandy, Subrata2; Srinet, Ritika2; Nguyen Viet Luong3; Ghosh, Surajit4; Kumar, A. Senthil1
发表日期2019
ISSN1574-9541
EISSN1878-0512
卷号50页码:24-32
英文摘要

Forest biomass is one of the key measurement for carbon budget accounting, carbon flux monitoring, and climate change studies. Hence, it is essential to develop a credible approach to estimate forest biomass and carbon stocks. Our study applied Sentinel-2 satellite imagery combined with field-measured biomass using Random Forest (RF), a machine learning regression algorithm, to estimate forest aboveground biomass (AGB) in Yok Don National Park, Vietnam. A total of 132 spectral and texture variables were extracted from Sentinel-2 imagery (February 7, 2017) to predict AGB of the National Park using RF algorithm. It was found that a combination of 132 spectral and texture variables could predict AGB with an R-2 value of 0.94, RMSE of 34.5 Mgha(-1) and % RMSE of 18.3%. RF regression algorithm was further used to reduce the number of variables in such a way that a minimum number of selected variables can be able to estimate AGB at a satisfactory level. A combination of 11 spectral and texture variables was identified based on out-of-bag (OOB) estimation to develop an easy-to-use model for estimating AGB. On validation, the model developed with 11 variables was able to predict AGB with R-2 = 0.81, RMSE = 36.67 Mg ha(-1) and %RMSE of 19.55%. The results found in the present study demonstrated that Sentinel-2 imagery in conjunction with RF-based regression algorithm has the potential to effectively predict the spatial distribution of forest AGB with adequate accuracy.


WOS研究方向Environmental Sciences & Ecology
来源期刊ECOLOGICAL INFORMATICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/94285
作者单位1.CSSTEAP, Dehra Dun 248001, India;
2.Govt India, Indian Space Res Org, Indian Inst Remote Sensing, Dept Space, Dehra Dun 248001, India;
3.VAST, STI, Remote Sensing Applicat Dept, Hanoi, Vietnam;
4.Int Ctr Agr Res Dry Areas, New Delhi, India
推荐引用方式
GB/T 7714
An Thi Ngoc Dang,Nandy, Subrata,Srinet, Ritika,et al. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam[J],2019,50:24-32.
APA An Thi Ngoc Dang,Nandy, Subrata,Srinet, Ritika,Nguyen Viet Luong,Ghosh, Surajit,&Kumar, A. Senthil.(2019).Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam.ECOLOGICAL INFORMATICS,50,24-32.
MLA An Thi Ngoc Dang,et al."Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam".ECOLOGICAL INFORMATICS 50(2019):24-32.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[An Thi Ngoc Dang]的文章
[Nandy, Subrata]的文章
[Srinet, Ritika]的文章
百度学术
百度学术中相似的文章
[An Thi Ngoc Dang]的文章
[Nandy, Subrata]的文章
[Srinet, Ritika]的文章
必应学术
必应学术中相似的文章
[An Thi Ngoc Dang]的文章
[Nandy, Subrata]的文章
[Srinet, Ritika]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。