CCPortal
DOI10.1016/j.isprsjprs.2019.01.017
A new algorithm for the estimation of leaf unfolding date using MODIS data over China's terrestrial ecosystems
Wang, Jian1,2; Wu, Chaoyang2,3; Wang, Xiaoyue3; Zhang, Xiaoyang4
发表日期2019
ISSN0924-2716
EISSN1872-8235
卷号149页码:77-90
英文摘要

Using solely vegetation indices (VIs) from remote sensing is not always sufficient to accurately detect spring leaf phenology, i.e., the leaf unfolding date (LUD). Several current phenology products failed to provide reliable LUD estimates for specific regions and plant functional types, e.g., evergreen species at mid-low latitudes. Therefore, increasing efforts have been made to improve LUD modeling by combining VIs and meteorological variables. Temperature before the growing season ('preseason' henceforth) plays an important role in regulating spring phenology. With ground observations of LUD (LUDOBS) across different plant functional types (PFTs) in China during 2001-2014, we analyzed the response of LUDOBS to preseason temperature temporally and spatially, and proposed an improved LUD modeling algorithm by developing a temperature-based scale factor to adjust the traditional VI-based (i.e., two band enhanced vegetation index (EVI2)) LUD estimates. We found that the new algorithm can better characterize the spatial and temporal patterns of LUD variability for different PFTs, especially for evergreen species where MODIS phenology product failed to provide reliable LUD estimates. Furthermore, we investigated the spatio-temporal patterns of LUD over China with respect to both different vegetation types and climate systems. We showed that for similar to 70% pixels, our new model predicted an overall later LUDs than MODIS phenology product, possibly suggesting an overestimated greening potential of China's terrestrial ecosystems. Our study suggests that preseason temperature plays a previously neglected role in modeling spring LUD and instead of using VIs or temperature alone, a combination of temperature and VIs can improve the prediction of spring phenology.


WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源期刊ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/94261
作者单位1.Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China;
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
3.Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China;
4.South Dakota State Univ, Geospatial Sci Ctr Excellence, Dept Geog, 1021 Medary Ave,Wecota Hall 506B, Brookings, SD 57007 USA
推荐引用方式
GB/T 7714
Wang, Jian,Wu, Chaoyang,Wang, Xiaoyue,et al. A new algorithm for the estimation of leaf unfolding date using MODIS data over China's terrestrial ecosystems[J],2019,149:77-90.
APA Wang, Jian,Wu, Chaoyang,Wang, Xiaoyue,&Zhang, Xiaoyang.(2019).A new algorithm for the estimation of leaf unfolding date using MODIS data over China's terrestrial ecosystems.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,149,77-90.
MLA Wang, Jian,et al."A new algorithm for the estimation of leaf unfolding date using MODIS data over China's terrestrial ecosystems".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 149(2019):77-90.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Jian]的文章
[Wu, Chaoyang]的文章
[Wang, Xiaoyue]的文章
百度学术
百度学术中相似的文章
[Wang, Jian]的文章
[Wu, Chaoyang]的文章
[Wang, Xiaoyue]的文章
必应学术
必应学术中相似的文章
[Wang, Jian]的文章
[Wu, Chaoyang]的文章
[Wang, Xiaoyue]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。