Climate Change Data Portal
DOI | 10.1029/2018WR024090 |
Improving Precipitation Estimation Using Convolutional Neural Network | |
Pan, Baoxiang1; Hsu, Kuolin1; AghaKouchak, Amir1,2; Sorooshian, Soroosh1,2 | |
发表日期 | 2019 |
ISSN | 0043-1397 |
EISSN | 1944-7973 |
卷号 | 55期号:3页码:2301-2321 |
英文摘要 | Precipitation process is generally considered to be poorly represented in numerical weather/climate models. Statistical downscaling (SD) methods, which relate precipitation with model resolved dynamics, often provide more accurate precipitation estimates compared to model's raw precipitation products. We introduce the convolutional neural network model to foster this aspect of SD for daily precipitation prediction. Specifically, we restrict the predictors to the variables that are directly resolved by discretizing the atmospheric dynamics equations. In this sense, our model works as an alternative to the existing precipitation-related parameterization schemes for numerical precipitation estimation. We train the model to learn precipitation-related dynamical features from the surrounding dynamical fields by optimizing a hierarchical set of spatial convolution kernels. We test the model at 14 geogrid points across the contiguous United States. Results show that provided with enough data, precipitation estimates from the convolutional neural network model outperform the reanalysis precipitation products, as well as SD products using linear regression, nearest neighbor, random forest, or fully connected deep neural network. Evaluation for the test set suggests that the improvements can be seamlessly transferred to numerical weather modeling for improving precipitation prediction. Based on the default network, we examine the impact of the network architectures on model performance. Also, we offer simple visualization and analyzing approaches to interpret the models and their results. Our study contributes to the following two aspects: First, we offer a novel approach to enhance numerical precipitation estimation; second, the proposed model provides important implications for improving precipitation-related parameterization schemes using a data-driven approach. Plain Language Summary The precipitation process is not well simulated in numerical weather models, since it takes place at the scales beyond the resolution of current models. We develop a statistical model using deep learning technique to improve the estimation of precipitation in numerical weather models. |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
来源期刊 | WATER RESOURCES RESEARCH
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/94160 |
作者单位 | 1.Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA; 2.Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA |
推荐引用方式 GB/T 7714 | Pan, Baoxiang,Hsu, Kuolin,AghaKouchak, Amir,et al. Improving Precipitation Estimation Using Convolutional Neural Network[J],2019,55(3):2301-2321. |
APA | Pan, Baoxiang,Hsu, Kuolin,AghaKouchak, Amir,&Sorooshian, Soroosh.(2019).Improving Precipitation Estimation Using Convolutional Neural Network.WATER RESOURCES RESEARCH,55(3),2301-2321. |
MLA | Pan, Baoxiang,et al."Improving Precipitation Estimation Using Convolutional Neural Network".WATER RESOURCES RESEARCH 55.3(2019):2301-2321. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。