Climate Change Data Portal
DOI | 10.1038/s41557-018-0201-x |
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2 | |
Jiao, Jiqing1,2; Lin, Rui1; Liu, Shoujie3; Cheong, Weng-Chon1; Zhang, Chao1; Chen, Zheng1; Pan, Yuan1; Tang, Jianguo2; Wu, Konglin1; Hung, Sung-Fu4; Chen, Hao Ming4; Zheng, Lirong5; Lu, Qi6; Yang, Xuan7; Xu, Bingjun7; Xiao, Hai1; Li, Jun1; Wang, Dingsheng1; Peng, Qing1; Chen, Chen1; Li, Yadong1 | |
发表日期 | 2019 |
ISSN | 1755-4330 |
EISSN | 1755-4349 |
卷号 | 11期号:3页码:222-228 |
英文摘要 | The electrochemical reduction of CO2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an 'atom-pair catalyst', that work together to carry out the critical bimolecular step in CO2 reduction. The atom-pair catalyst features stable Cu-1(0)-Cu-1(x+) pair structures, with Cu-1(x+) adsorbing H2O and the neighbouring Cu-1(0) adsorbing CO2, which thereby promotes CO2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials. |
WOS研究方向 | Chemistry |
来源期刊 | NATURE CHEMISTRY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/93819 |
作者单位 | 1.Tsinghua Univ, Dept Chem, Beijing, Peoples R China; 2.Qingdao Univ, Natl Base Int Sci & Tech Cooperat Hybrid Mat, Coll Mat Sci & Engn, Qingdao, Peoples R China; 3.Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu, Peoples R China; 4.Natl Taiwan Univ, Dept Chem, Taipei, Taiwan; 5.Chinese Acad Sci, Beijing Synchrotron Radiat Facil, Beijing, Peoples R China; 6.Tsinghua Univ, Dept Chem Engn, Beijing, Peoples R China; 7.Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE USA |
推荐引用方式 GB/T 7714 | Jiao, Jiqing,Lin, Rui,Liu, Shoujie,et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J],2019,11(3):222-228. |
APA | Jiao, Jiqing.,Lin, Rui.,Liu, Shoujie.,Cheong, Weng-Chon.,Zhang, Chao.,...&Li, Yadong.(2019).Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2.NATURE CHEMISTRY,11(3),222-228. |
MLA | Jiao, Jiqing,et al."Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2".NATURE CHEMISTRY 11.3(2019):222-228. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。