Climate Change Data Portal
DOI | 10.3390/rs11040378 |
Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence | |
Zhang, Lifu1; Qiao, Na1,2; Huang, Changping1; Wang, Siheng1,2 | |
发表日期 | 2019 |
ISSN | 2072-4292 |
卷号 | 11期号:4 |
英文摘要 | Around the world, the increasing drought, which is exacerbated by climate change, has significant impacts on vegetation carbon assimilation. Identifying how short-term climate anomalies influence vegetation productivity in a timely and accurate manner at the satellite scale is crucial to monitoring drought. Satellite solar-induced chlorophyll fluorescence (SIF) has recently been reported as a direct proxy of actual vegetation photosynthesis and has more advantages than traditional vegetation indices (e.g., the Normalized Difference Vegetation Index, NDVI and the Enhanced Vegetation Index, EVI) in monitoring vegetation vitality. This study aims to evaluate the feasibility of SIF in interpreting drought effects on vegetation productivity in Victoria, Australia, where heat stress and drought are often reported. Drought-induced variations in SIF and absorbed photosynthetically active radiation (APAR) estimations based on NDVI and EVI were investigated and validated against results indicated by gross primary production (GPP). We first compared drought responses of GPP and vegetation proxies (SIF and APAR) during the 2009 drought event, considering potential biome-dependency. Results showed that SIF exhibited more consistent declines with GPP losses induced by drought than did APAR estimations during the 2009 drought period in space and time, where APAR had obvious lagged responses compared with SIF, especially in evergreen broadleaf forest land. We then estimated the sensitivities of the aforementioned variables to meteorology anomalies using the ARx model, where memory effects were considered, and compared the correlations of GPP anomaly with the anomalies of vegetation proxies during a relatively long period (2007-2013). Compared with APAR, GPP and SIF are more sensitive to temperature anomalies for the general Victoria region. For crop land, GPP and vegetation proxies showed similar sensitivities to temperature and water availability. For evergreen broadleaf forest land, SIF anomaly was explained better by meteorology anomalies than APAR anomalies. GPP anomaly showed a stronger linear relationship with SIF anomaly than with APAR anomalies, especially for evergreen broadleaf forest land. We showed that SIF might be a promising tool for effectively evaluating short-term drought impacts on vegetation productivity, especially in drought-vulnerable areas, such as Victoria. |
WOS研究方向 | Remote Sensing |
来源期刊 | REMOTE SENSING |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/93257 |
作者单位 | 1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China; 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Lifu,Qiao, Na,Huang, Changping,et al. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence[J],2019,11(4). |
APA | Zhang, Lifu,Qiao, Na,Huang, Changping,&Wang, Siheng.(2019).Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence.REMOTE SENSING,11(4). |
MLA | Zhang, Lifu,et al."Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence".REMOTE SENSING 11.4(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。