Climate Change Data Portal
DOI | 10.3390/rs11040463 |
Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science | |
Boisvenue, Celine; White, Joanne C. | |
发表日期 | 2019 |
ISSN | 2072-4292 |
卷号 | 11期号:4 |
英文摘要 | Forests are integral to the global carbon cycle, and as a result, the accurate estimation of forest structure, biomass, and carbon are key research priorities for remote sensing science. However, estimating and understanding forest carbon and its spatiotemporal variations requires diverse knowledge from multiple research domains, none of which currently offer a complete understanding of forest carbon dynamics. New large-area forest information products derived from remotely sensed data provide unprecedented spatial and temporal information about our forests, which is information that is currently underutilized in forest carbon models. Our goal in this communication is to articulate the information needs of next-generation forest carbon models in order to enable the remote sensing community to realize the best and most useful application of its science, and perhaps also inspire increased collaboration across these research fields. While remote sensing science currently provides important contributions to large-scale forest carbon models, more coordinated efforts to integrate remotely sensed data into carbon models can aid in alleviating some of the main limitations of these models; namely, low sample sizes and poor spatial representation of field data, incomplete population sampling (i.e., managed forests exclusively), and an inadequate understanding of the processes that influence forest carbon accumulation and fluxes across spatiotemporal scales. By articulating the information needs of next-generation forest carbon models, we hope to bridge the knowledge gap between remote sensing experts and forest carbon modelers, and enable advances in large-area forest carbon modeling that will ultimately improve estimates of carbon stocks and fluxes. |
WOS研究方向 | Remote Sensing |
来源期刊 | REMOTE SENSING |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/93231 |
作者单位 | Nat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada |
推荐引用方式 GB/T 7714 | Boisvenue, Celine,White, Joanne C.. Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science[J],2019,11(4). |
APA | Boisvenue, Celine,&White, Joanne C..(2019).Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science.REMOTE SENSING,11(4). |
MLA | Boisvenue, Celine,et al."Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science".REMOTE SENSING 11.4(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。