Climate Change Data Portal
DOI | 10.5194/bg-16-437-2019 |
Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea | |
Gustafsson, Erik1; Hagens, Mathilde2,7; Sun, Xiaole3; Reed, Daniel C.4; Humborg, Christoph3,5,6; Slomp, Caroline P.2; Gustafsson, Bo G.1,6 | |
发表日期 | 2019 |
ISSN | 1726-4170 |
EISSN | 1726-4189 |
卷号 | 16期号:2页码:437-456 |
英文摘要 | Enhanced release of alkalinity from the seafloor, principally driven by anaerobic degradation of organic matter under low-oxygen conditions and associated secondary redox reactions, can increase the carbon dioxide (CO2) buffering capacity of seawater and therefore oceanic CO2 uptake. The Baltic Sea has undergone severe changes in oxygenation state and total alkalinity (TA) over the past decades. The link between these concurrent changes has not yet been investigated in detail. A recent system-wide TA budget constructed for the past 50 years using BALTSEM, a coupled physical-biogeochemical model for the whole Baltic Sea area revealed an unknown TA source. Here we use BALTSEM in combination with observational data and one-dimensional reactive-transport modeling of sedimentary processes in the Faro Deep, a deep Baltic Sea basin, to test whether sulfate (SO42-) reduction coupled to iron (Fe) sulfide burial can explain the missing TA source in the Baltic Proper. We calculated that this burial can account for up to 26% of the missing source in this basin, with the remaining TA possibly originating from unknown river inputs or submarine groundwater discharge. We also show that temporal variability in the input of Fe to the sediments since the 1970s drives changes in sulfur (S) burial in the Faro Deep, suggesting that Fe availability is the ultimate limiting factor for TA generation under anoxic conditions. The implementation of projected climate change and two nutrient load scenarios for the 21st century in BALTSEM shows that reducing nutrient loads will improve deep water oxygen conditions, but at the expense of lower surface water TA concentrations, CO2 buffering capacities and faster acidification. When these changes additionally lead to a decrease in Fe inputs to the sediment of the deep basins, anaerobic TA generation will be reduced even further, thus exacerbating acidification. This work highlights that Fe dynamics plays a key role in the release of TA from sediments where Fe sulfide formation is limited by Fe availability, as exemplified by the Baltic Sea. Moreover, it demonstrates that burial of Fe sulfides should be included in TA budgets of low-oxygen basins. |
WOS研究方向 | Environmental Sciences & Ecology ; Geology |
来源期刊 | BIOGEOSCIENCES |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/92248 |
作者单位 | 1.Stockholm Univ, Balt Sea Ctr, Balt Nest Inst, S-10691 Stockholm, Sweden; 2.Univ Utrecht, Dept Earth Sci, Geochem, POB 80-021, NL-3508 TA Utrecht, Netherlands; 3.Stockholm Univ, Balt Sea Ctr, S-10691 Stockholm, Sweden; 4.Bedford Inst Oceanog, Fisheries & Oceans Canada, Dartmouth, NS, Canada; 5.Stockholm Univ, Dept Environm Sci & Analyt Chem, S-10691 Stockholm, Sweden; 6.Univ Helsinki, Tvarminne Zool Stn, JA Palmenin Tie 260, Hango 10900, Finland; 7.Wageningen Univ, Soil Chem & Chem Soil Qual, POBox 47, NL-6700 AA Wageningen, Netherlands |
推荐引用方式 GB/T 7714 | Gustafsson, Erik,Hagens, Mathilde,Sun, Xiaole,et al. Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea[J],2019,16(2):437-456. |
APA | Gustafsson, Erik.,Hagens, Mathilde.,Sun, Xiaole.,Reed, Daniel C..,Humborg, Christoph.,...&Gustafsson, Bo G..(2019).Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea.BIOGEOSCIENCES,16(2),437-456. |
MLA | Gustafsson, Erik,et al."Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea".BIOGEOSCIENCES 16.2(2019):437-456. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。