Climate Change Data Portal
DOI | 10.5194/soil-5-33-2019 |
Dynamic modelling of weathering rates - the benefit over steady-state modelling | |
Kronnas, Veronika1; Akselsson, Cecilia1; Belyazid, Salim2 | |
发表日期 | 2019 |
ISSN | 2199-3971 |
EISSN | 2199-398X |
卷号 | 5期号:1页码:33-47 |
英文摘要 | Weathering rates are of considerable importance in estimating the acidification sensitivity and recovery capacity of soil and are thus important in the assessment of the sustainability of forestry in a time of changing climate and growing demands for forestry products. In this study, we modelled rates of weathering in mineral soil at two forested sites in southern Sweden included in a monitoring network, using two models. The aims were to determine whether the dynamic model ForSAFE gives comparable weathering rates to the steady-state model PROFILE and whether the ForSAFE model provided believable and useful extra information on the response of weathering to changes in acidification load, climate change and land use. The average weathering rates calculated with ForSAFE were very similar to those calculated with PROFILE for the two modelled sites. The differences between the models regarding the weathering of certain soil layers seemed to be due mainly to differences in calculated soil moisture. The weathering rates provided by ForSAFE vary seasonally with temperature and soil moisture, as well as on longer timescales, depending on environmental changes. Long-term variations due to environmental changes can be seen in the ForSAFE results, for example, the weathering of silicate minerals is suppressed under acidified conditions due to elevated aluminium concentration in the soil, whereas the weathering of apatite is accelerated by acidification. The weathering of both silicates and apatite is predicted to be enhanced by increasing temperature during the 21st century. In this part of southern Sweden, yearly precipitation is assumed to be similar to today's level during the next forest rotation, but with more precipitation in winter and spring and less in summer, which leads to somewhat drier soils in summer but still with increased weathering. In parts of Sweden with a bigger projected decrease in soil moisture, weathering might not increase despite increasing temperature. These results show that the dynamic ForSAFE model can be used for weathering rate calculations and that it gives average results comparable to those from the PROFILE model. However, dynamic modelling provides extra information on the variation in weathering rates with time and offers much better possibilities for scenario modelling. |
WOS研究方向 | Agriculture |
来源期刊 | SOIL |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/92206 |
作者单位 | 1.Lund Univ, Dept Phys Geog & Ecosyst Sci, S-22362 Lund, Sweden; 2.Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden |
推荐引用方式 GB/T 7714 | Kronnas, Veronika,Akselsson, Cecilia,Belyazid, Salim. Dynamic modelling of weathering rates - the benefit over steady-state modelling[J],2019,5(1):33-47. |
APA | Kronnas, Veronika,Akselsson, Cecilia,&Belyazid, Salim.(2019).Dynamic modelling of weathering rates - the benefit over steady-state modelling.SOIL,5(1),33-47. |
MLA | Kronnas, Veronika,et al."Dynamic modelling of weathering rates - the benefit over steady-state modelling".SOIL 5.1(2019):33-47. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。