CCPortal
DOI10.1016/j.geoderma.2018.07.016
Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations
Jiang, Xinyu1; Tan, Xiangping2; Cheng, Jiong1; Haddix, Michelle L.3; Cotrufo, M. Francesca3,4
发表日期2019
ISSN0016-7061
EISSN1872-6259
卷号333页码:99-107
英文摘要

Biochar has been considered a stable additive for long-term soil carbon (C) storage and climate change mitigation. However, our understanding of the long-term interactions between aged biochar, soil organic C (SOC), and fresh low molecular weight C compounds (LMW-C) is still limited. In addition to the changes in the chemical properties of biochar and the SOC after aging, biochar stability and C sequestration potentials might be affected by the LMW-C availability. After 3.5 years of incubation, aged soils and aged soil-biochar mixtures (4 atom parts per thousand C-13 enriched grass-derived biochar, 10% addition rate) of two different soil types were used in this study, with or without the addition of LMW-C. The C-13 natural abundance of the LMW-C was manipulated by mixing cane sucrose (C4) and beet sugar (C3) to make it different from or equal to the native SOC isotopic signature of the two soil types, which allowed the partitioning of the LMW-C and biochar C from the SOC in non-biochar and biochar addition treatments, respectively. We traced the C-13 in the cumulative CO2, microbial biomass C (MBC), and dissolved organic C (DOC) at the beginning and the end of the 28 days of incubation. Results indicated that this aged biochar was not as effective for SOC protection as it was when fresh. Aged biochar caused significant increases in the native SOC-derived CO2 compared to non-biochar treatment during the 3.5 years of aging. Within the 28 days of incubation, aged biochar not only promoted the total CO2 emission but also did not limit the priming effect of LMW-C on native SOC mineralization. SOC-derived DOC in the aged soil-biochar mixture was significantly higher than that in the aged soil, which further increased the SOC loss. A decline in the SOC stability with aged biochar might be associated with the attenuated sorption of SOC on aged biochar, the decline in bulk density with the high biochar addition rate, and a modified microbial community. The priming of aged SOC mineralization with the addition of LMW-C might be associated with the enhanced microbial N demand in aged soils and soil-biochar mixtures. The effect of aged biochar on the soil DOC and the effect of LMW-C on the aged biochar and SOC stabilities should be further investigated in field conditions, under continuous fresh C inputs, to better evaluate the effects of biochar on long-term SOC storage.


WOS研究方向Agriculture
来源期刊GEODERMA
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/91750
作者单位1.Guangdong Inst Ecoenvironm Sci & Technol, Guangdong Key Lab Integrated Agroenvironm Pollut, Guangzhou 510650, Guangdong, Peoples R China;
2.Chinese Acad Sci, Ctr Ecol & Environm Sci, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China;
3.Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA;
4.Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA
推荐引用方式
GB/T 7714
Jiang, Xinyu,Tan, Xiangping,Cheng, Jiong,et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations[J],2019,333:99-107.
APA Jiang, Xinyu,Tan, Xiangping,Cheng, Jiong,Haddix, Michelle L.,&Cotrufo, M. Francesca.(2019).Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations.GEODERMA,333,99-107.
MLA Jiang, Xinyu,et al."Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations".GEODERMA 333(2019):99-107.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Xinyu]的文章
[Tan, Xiangping]的文章
[Cheng, Jiong]的文章
百度学术
百度学术中相似的文章
[Jiang, Xinyu]的文章
[Tan, Xiangping]的文章
[Cheng, Jiong]的文章
必应学术
必应学术中相似的文章
[Jiang, Xinyu]的文章
[Tan, Xiangping]的文章
[Cheng, Jiong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。