CCPortal
DOI10.1080/22797254.2019.1605624
Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?
Valbuena, Ruben1,2,3; Hernando, Ana4; Manzanera, Jose Antonio4; Gorgens, Eric B.5; Almeida, Danilo R. A.6; Silva, Carlos A.7,8; Garcia-Abril, Antonio4
发表日期2019
EISSN2279-7254
卷号52期号:1页码:345-358
英文摘要

The accurate prediction of forest above-ground biomass is nowadays key to implementing climate change mitigation policies, such as reducing emissions from deforestation and forest degradation. In this context, the coefficient of determination () is widely used as a means of evaluating the proportion of variance in the dependent variable explained by a model. However, the validity of for comparing observed versus predicted values has been challenged in the presence of bias, for instance in remote sensing predictions of forest biomass. We tested suitable alternatives, e.g. the index of agreement () and the maximal information coefficient (). Our results show that renders systematically higher values than , and may easily lead to regarding as reliable models which included an unrealistic amount of predictors. Results seemed better for , although favoured local clustering of predictions, whether or not they corresponded to the observations. Moreover, was more sensitive to the use of cross-validation than or , and more robust against overfitted models. Therefore, we discourage the use of statistical measures alternative to for evaluating model predictions versus observed values, at least in the context of assessing the reliability of modelled biomass predictions using remote sensing. For those who consider to be conceptually superior to , we suggest using its square , in order to be more analogous to and hence facilitate comparison across studies.


WOS研究方向Remote Sensing
来源期刊EUROPEAN JOURNAL OF REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/91033
作者单位1.Univ Cambridge, Dept Plant Sci Forest Ecol & Conservat, Cambridge, England;
2.Univ Eastern Finland, Fac Forest Sci, Joensuu, Finland;
3.Bangor Univ, Sch Nat Sci, Thoday Bldg, Bangor LL57 2UW, Gwynedd, Wales;
4.Univ Politecn Madrid, Res Grp SILVANET, Coll Forestry & Nat Environm, Ciudad Univ, Madrid, Spain;
5.Univ Fed Vales Jequitinhonha & Mucuri, Dept Forestry, Diamantina, Brazil;
6.Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Forest Sci, Piracicaba, Brazil;
7.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
8.NASA, Biosci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
推荐引用方式
GB/T 7714
Valbuena, Ruben,Hernando, Ana,Manzanera, Jose Antonio,et al. Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?[J],2019,52(1):345-358.
APA Valbuena, Ruben.,Hernando, Ana.,Manzanera, Jose Antonio.,Gorgens, Eric B..,Almeida, Danilo R. A..,...&Garcia-Abril, Antonio.(2019).Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?.EUROPEAN JOURNAL OF REMOTE SENSING,52(1),345-358.
MLA Valbuena, Ruben,et al."Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?".EUROPEAN JOURNAL OF REMOTE SENSING 52.1(2019):345-358.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Valbuena, Ruben]的文章
[Hernando, Ana]的文章
[Manzanera, Jose Antonio]的文章
百度学术
百度学术中相似的文章
[Valbuena, Ruben]的文章
[Hernando, Ana]的文章
[Manzanera, Jose Antonio]的文章
必应学术
必应学术中相似的文章
[Valbuena, Ruben]的文章
[Hernando, Ana]的文章
[Manzanera, Jose Antonio]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。