Climate Change Data Portal
DOI | 10.1016/j.agee.2019.04.001 |
Agroecosystem resilience in response to extreme winter flooding | |
Harvey, Rachel J.1; Chadwick, David R.1; Rafael Sanchez-Rodriguez, Antonio1,2; Jones, Davey L.1,3 | |
发表日期 | 2019 |
ISSN | 0167-8809 |
EISSN | 1873-2305 |
卷号 | 279页码:1-13 |
英文摘要 | Evidence suggests that climate change is increasing the frequency of extreme weather events (e.g. excessive rainfall, heat, wind). The winter of 2013-14 saw exceptional levels of rainfall across the UK leading to extreme and prolonged flooding (up to 3 months with floodwater depths up to 3 m) in several low-lying agricultural areas (e.g. Somerset Levels, Thames Valley). The impact of extreme flooding and the speed of ecosystem recovery at the field-scale, however, remain poorly understood. The main objectives of this study were therefore to: (1) assess the effect of this extreme winter flooding event on a range of soil physical, chemical and biological quality indicators at 15 flood-affected sites (arable and grassland), (2) determine if these changes in soil health were reversible in the short term ( < 1 year), and (3) to evaluate the effectiveness of different mechanical interventions (sward-lifting, subsoiling, slot-seeding and aerating) to accelerate the amelioration of the damage caused by winter flooding at 2 of the 15 sites. Once the floodwater had receded (April 2014), we found that several of the measured soil quality indicators were negatively affected in the flooded areas in comparison with non flooded areas. This included a decrease in soil bulk density (by 19%), soil pH (by 0.4 units), and available P (by up to 42%). Flooding increased soil microbial biomass (60%), induced a shift in soil microbial community structure and reduced earthworm numbers. After 8 months of recovery, only soil pH remained significantly reduced (by 0.3 units) in the flooded areas in comparison to the unflooded areas. Flooding had a negative impact on the overlying vegetation at the arable sites (biomass production was reduced by between 19 and 34%) but had no major impact at the grassland sites in the long-term. In the flood amelioration experiment, the subsoiled plots produced grass with a higher nutrient content (e.g. N - up to 35%, Ca - up to 19% and Mg - up to 58%). However, the four different interventions appeared to have little positive impact on most of the soil quality indicators measured. In conclusion, extreme winter flooding was found to induce short-term alterations in key soil quality indicators and to destroy winter crops, although these effects did not persist in the longer term. Our results therefore indicate that the temperate agroecosystems evaluated here were highly resilient to winter flood stress and that recovery to a pre-flood state could be achieved within 1 year. Improved management strategies are still needed to speed up the rate of recovery after flood events to facilitate a faster return to agricultural production. |
WOS研究方向 | Agriculture ; Environmental Sciences & Ecology |
来源期刊 | AGRICULTURE ECOSYSTEMS & ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/89895 |
作者单位 | 1.Bangor Univ, Environm Ctr Wales, Deiniol Rd, Bangor LL57 2UW, Gwynedd, Wales; 2.Univ Cordoba, Agron Dept, Campus Rabanales,Edificio C4 Celestino Mutis, E-14071 Cordoba, Spain; 3.Univ Western Australia, UWA Sch Agr & Environm, Crawley, WA 6009, Australia |
推荐引用方式 GB/T 7714 | Harvey, Rachel J.,Chadwick, David R.,Rafael Sanchez-Rodriguez, Antonio,et al. Agroecosystem resilience in response to extreme winter flooding[J],2019,279:1-13. |
APA | Harvey, Rachel J.,Chadwick, David R.,Rafael Sanchez-Rodriguez, Antonio,&Jones, Davey L..(2019).Agroecosystem resilience in response to extreme winter flooding.AGRICULTURE ECOSYSTEMS & ENVIRONMENT,279,1-13. |
MLA | Harvey, Rachel J.,et al."Agroecosystem resilience in response to extreme winter flooding".AGRICULTURE ECOSYSTEMS & ENVIRONMENT 279(2019):1-13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。