CCPortal
DOI10.1016/j.ecolmodel.2018.10.024
Disentangling uncertainties from niche modeling in freshwater ecosystems
Parreira, Micael Rosa1; Nabout, Joao Carlos1; Tessarolo, Geiziane1; Lima-Ribeiro, Matheus de Souza2; Teresaa, Fabricio Barreto1
发表日期2019
ISSN0304-3800
EISSN1872-7026
卷号391页码:1-8
英文摘要

Predictions by ecological niche models (ENM) are affected by several sources of uncertainty including the modeling methods and type of variables employed. The predictive uncertainty has been often assessed in terrestrial ecosystems, but it is still unknown how freshwater variables affect the performance of ENMs, contributing to unreliable predictions for aquatic species. Here, we used the ecologically and economically relevant Amazon giant catfish (Brachyplatystoma filamentosum) as a model species to assess uncertainties on ENM predictions in freshwater ecosystems. Specifically, we assessed uncertainty by coupling ENM predictions using five modeling methods and four sets of freshwater environmental variables. Our results indicate that the modeling methods and secondarily the variables account for significant uncertainty in predicting freshwater species distribution using ENM. Areas with high environmental suitability such as the Amazon large rivers and nearby areas presented high uncertainty for the methods component, and lower uncertainties for freshwater variables. Moreover, freshwater variables accounted also for uncertainties in metrics of models' performance. Whereas Topographic variables better predicted presences (higher sensitivities and lower omission errors), Land cover and Soil variables better predicted pseudo-absences (higher specificities and lower commission errors). The Hydroclimatic variables had better accuracy metrics values (AUC and TSS) but also generated the greatest uncertainty for the final models. When included variables from all groups, ENMs presented low uncertainties and good accuracy. In sum, our findings suggest the importance of measuring and mapping the uncertainties of ENMs using freshwater environmental database.


英文关键词Zingiber;DIVA-GIS;Distribution patterns;MaxEnt model;Suitable habitat;Climate change
WOS研究方向Environmental Sciences & Ecology
来源期刊ECOLOGICAL MODELLING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/89791
作者单位1.Univ Estadual Goias, CCET,BR-153,3-105, BR-75132903 Anapolis, Go, Brazil;
2.Univ Fed Jatai, Lab Macroecol, Rua Riachuelo 1530, BR-75804020 Jatai, Go, Brazil
推荐引用方式
GB/T 7714
Parreira, Micael Rosa,Nabout, Joao Carlos,Tessarolo, Geiziane,et al. Disentangling uncertainties from niche modeling in freshwater ecosystems[J],2019,391:1-8.
APA Parreira, Micael Rosa,Nabout, Joao Carlos,Tessarolo, Geiziane,Lima-Ribeiro, Matheus de Souza,&Teresaa, Fabricio Barreto.(2019).Disentangling uncertainties from niche modeling in freshwater ecosystems.ECOLOGICAL MODELLING,391,1-8.
MLA Parreira, Micael Rosa,et al."Disentangling uncertainties from niche modeling in freshwater ecosystems".ECOLOGICAL MODELLING 391(2019):1-8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Parreira, Micael Rosa]的文章
[Nabout, Joao Carlos]的文章
[Tessarolo, Geiziane]的文章
百度学术
百度学术中相似的文章
[Parreira, Micael Rosa]的文章
[Nabout, Joao Carlos]的文章
[Tessarolo, Geiziane]的文章
必应学术
必应学术中相似的文章
[Parreira, Micael Rosa]的文章
[Nabout, Joao Carlos]的文章
[Tessarolo, Geiziane]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。