Climate Change Data Portal
DOI | 10.1016/j.agrformet.2019.05.018 |
Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia | |
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Yu, Qiang | |
发表日期 | 2019-09-15 |
ISSN | 0168-1923 |
EISSN | 1873-2240 |
卷号 | 275页码:100-113 |
英文摘要 | Accurately assessing the impacts of extreme climate events (ECEs) on crop yield can help develop effective agronomic practices to deal with climate change impacts. Process-based crop models are useful tools to evaluate climate change impacts on crop produ |
关键词 | Extreme climate eventsWheat yieldAPSIMRandom forestHybrid model |
学科领域 | Agronomy;Forestry;Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS记录号 | WOS:000480376400010 |
来源期刊 | AGRICULTURAL AND FOREST METEOROLOGY |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/80883 |
作者单位 | Northwest A&F Univ, State Key Lab Soil Eros & Dryland Fanning Loess P, Yangling 712100, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Feng, Puyu,Wang, Bin,Liu, De Li,et al. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia[J],2019,275:100-113. |
APA | Feng, Puyu,Wang, Bin,Liu, De Li,Waters, Cathy,&Yu, Qiang.(2019).Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia.AGRICULTURAL AND FOREST METEOROLOGY,275,100-113. |
MLA | Feng, Puyu,et al."Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia".AGRICULTURAL AND FOREST METEOROLOGY 275(2019):100-113. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。