CCPortal
DOI10.1016/j.agrformet.2019.05.018
Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Yu, Qiang
发表日期2019-09-15
ISSN0168-1923
EISSN1873-2240
卷号275页码:100-113
英文摘要Accurately assessing the impacts of extreme climate events (ECEs) on crop yield can help develop effective agronomic practices to deal with climate change impacts. Process-based crop models are useful tools to evaluate climate change impacts on crop produ
关键词Extreme climate eventsWheat yieldAPSIMRandom forestHybrid model
学科领域Agronomy;Forestry;Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:000480376400010
来源期刊AGRICULTURAL AND FOREST METEOROLOGY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/80883
作者单位Northwest A&F Univ, State Key Lab Soil Eros & Dryland Fanning Loess P, Yangling 712100, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Feng, Puyu,Wang, Bin,Liu, De Li,et al. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia[J],2019,275:100-113.
APA Feng, Puyu,Wang, Bin,Liu, De Li,Waters, Cathy,&Yu, Qiang.(2019).Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia.AGRICULTURAL AND FOREST METEOROLOGY,275,100-113.
MLA Feng, Puyu,et al."Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia".AGRICULTURAL AND FOREST METEOROLOGY 275(2019):100-113.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Puyu]的文章
[Wang, Bin]的文章
[Liu, De Li]的文章
百度学术
百度学术中相似的文章
[Feng, Puyu]的文章
[Wang, Bin]的文章
[Liu, De Li]的文章
必应学术
必应学术中相似的文章
[Feng, Puyu]的文章
[Wang, Bin]的文章
[Liu, De Li]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。