Climate Change Data Portal
DOI | 10.1080/14498596.2017.1367331 |
NPP estimation using random forest and impact feature variable importance analysis | |
Yu, Bo; Chen, Fang; Chen, Hanyue | |
发表日期 | 2019 |
ISSN | 1449-8596 |
EISSN | 1836-5655 |
卷号 | 64期号:1页码:173-192 |
英文摘要 | In the context of climate change, large-scale net primary productivity (NPP) estimation and its impact feature variables are drawing more and more attention. Traditional process-based and empirical models are limited by their model structure and input var |
关键词 | Feature variable importanceMODISNPP calculationrandom forestremote sensing |
学科领域 | Geography, Physical;Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:000461796500011 |
来源期刊 | JOURNAL OF SPATIAL SCIENCE |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/80819 |
作者单位 | Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Yu, Bo,Chen, Fang,Chen, Hanyue. NPP estimation using random forest and impact feature variable importance analysis[J],2019,64(1):173-192. |
APA | Yu, Bo,Chen, Fang,&Chen, Hanyue.(2019).NPP estimation using random forest and impact feature variable importance analysis.JOURNAL OF SPATIAL SCIENCE,64(1),173-192. |
MLA | Yu, Bo,et al."NPP estimation using random forest and impact feature variable importance analysis".JOURNAL OF SPATIAL SCIENCE 64.1(2019):173-192. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。