CCPortal
DOI10.1016/j.agrformet.2017.05.026
Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains
Tian X.;   Yan M.;   van der Tol C.;   Li Z.;   Su Z.;   Chen E.;   Li X.;   Li L.;   Wang X.;   Pan X.;   Gao L.;   Han Z.
发表日期2017
ISSN01681924
卷号246
英文摘要In this work, we present a strategy for obtaining forest above-ground biomass (AGB) dynamics at a fine spatial and temporal resolution. Our strategy rests on the assumption that combining estimates of both AGB and carbon fluxes results in a more accurate accounting for biomass than considering the terms separately, since the cumulative carbon flux should be consistent with AGB increments. Such a strategy was successfully applied to the Qilian Mountains, a cold arid region of northwest China. Based on Landsat Thematic Mapper 5 (TM) data and ASTER GDEM V2 products (GDEM), we first improved the efficiency of existing non-parametric methods for mapping regional forest AGB for 2009 by incorporating the Random Forest (RF) model with the k-Nearest Neighbor (k-NN). Validation using forest measurements from 159 plots and the leave-one-out (LOO) method indicated that the estimates were reasonable (R2 = 0.70 and RMSE = 24.52 tones ha−1). We then obtained one seasonal cycle (2011) of GPP (R2 = 0.88 and RMSE = 5.02 gC m−2 8d−1) using the MODIS MOD_17 GPP (MOD_17) model that was calibrated to Eddy Covariance (EC) flux tower data (2010). After that, we calibrated the ecological process model (Biome-BioGeochemical Cycles (Biome-BGC)) against above GPP estimates (for 2010) for 30 representative forest plots over an ecological gradient in order to simulate AGB changes over time. Biome-BGC outputs of GPP and net ecosystem exchange (NEE) were validated against EC data (R2 = 0.75 and RMSE = 1. 27 gC m−2 d−1 for GPP, and R2 = 0.61 and RMSE = 1.17 gC m−2 d−1 for NEE). The calibrated Biome-BGC was then applied to produce a longer time series for net primary productivity (NPP), which, after conversion into AGB increments according to site-calibrated coefficients, were compared to dendrochronological measurements (R2 = 0.73 and RMSE = 46.65 g m−2 year−1). By combining these increments with the AGB map of 2009, we were able to model forest AGB dynamics. In the final step, we conducted a Monte Carlo analysis of uncertainties for interannual forest AGB estimates based on errors in the above forest AGB map, NPP estimates, and the conversion of NPP to an AGB increment. © 2017 The Author(s)
英文关键词Biome-BGC model; Forest above-ground biomass dynamics; MODIS MOD_17 GPP model; Monte carlo analysis; Remote sensing
URLhttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85020411990&doi=10.1016%2fj.agrformet.2017.05.026&partnerID=40&md5=785051a163ee6a9dbffb01168b4bd5e7
语种英语
scopus关键词aboveground biomass; arid region; ASTER; carbon flux; data set; dendrochronology; ecological modeling; eddy covariance; forest ecosystem; Landsat; Landsat thematic mapper; MODIS; Monte Carlo analysis; net ecosystem exchange; numerical model; primary production; remote sensing; China; Qilian Mountains
来源期刊Agricultural and Forest Meteorology
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/77220
推荐引用方式
GB/T 7714
Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z.. Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains[J]. 中国科学院西北生态环境资源研究院,2017,246.
APA Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z..(2017).Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains.Agricultural and Forest Meteorology,246.
MLA Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z.."Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains".Agricultural and Forest Meteorology 246(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z.]的文章
百度学术
百度学术中相似的文章
[Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z.]的文章
必应学术
必应学术中相似的文章
[Tian X.; Yan M.; van der Tol C.; Li Z.; Su Z.; Chen E.; Li X.; Li L.; Wang X.; Pan X.; Gao L.; Han Z.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。