CCPortal
THE CARBON DIOXIDE INFRARED ABSORPTION BANDS; PROBES OF THE CHEMISTRY ON THE SURFACE OF PLANETARY BODIES
项目编号NNX10AQ02G S02
ALESSANDRA RICCA
项目主持机构SETI INSTITUTE
开始日期2010-11-01
结束日期2013-10-31
英文摘要In many regions of the world's ocean, primary productivity is not limited by the major nutrients (nitrogen, phosphorous and silica) but by the micronutrient iron (Fe). One major source of Fe is the atmospheric transport and deposition of aerosols to the open ocean. The aerosols come from natural sources, such as soils and dust and biomass burning, and from anthropogenic emissions related to industrial processes and energy generation. Our understanding of the sources is limited by our ability to identify the origin of the Fe. Mechanisms of tracing the sources of aerosols include the use of the elemental ratios as specific sources have specific elemental signals. Fe isotopic variation has recently been demonstrated to be a potentially important tracer of Fe sources.

This project, a collaboration between investigators at Arizona State University and Northern Arizona University, will explore the use of Fe isotopes as a tracer of natural and anthropogenic sources of aerosols to assess their importance as a source of Fe to the open ocean. Fe is known to limit primary production in many high nutrient, low chlorophyll areas, so it is important to understand the origin of the Fe that is delivered to the oceans and its availability to marine microorganisms. Additionally, aerosols from different sources have variable size and solubility in seawater and therefore this also impacts Fe bioavailability. Examination of the isotopes of Fe in aerosols could help address these questions as the investigators' prior research has demonstrated distinct variations in the isotopic composition of aerosol Fe that arise from natural and anthropogenic sources.

The study will measure the Fe isotopic compositions of aerosol particles collected on Bermuda over a period of one year. Bermuda was chosen as seasonal differences lead to different aerosol types being deposited - summer winds flow from the east and carry Saharan soil dust and other aerosols, while winter winds originate from over North America. The project will compare the Bermuda results with that of key anthropogenic and natural aerosol materials that could be a source of Fe to the Atlantic Ocean. In addition, elemental analyses of these aerosols will provide an independent confirmation of the Fe isotopes results. Analysis of size-segregated samples will provide additional information and will be coupled with solubility experiments designed to assess the soluble Fe fraction.

Broader Impacts: The scientific impact of this work relates to obtaining a better understanding of the factors that impact the sources and availability of Fe, an important limiting micronutrient, to the ocean, and to marine microorganisms. As a part of the proposed project, the investigators will develop interactive educational activities to teach the major concepts of ocean nutrient availability and limitation to non-science students, which will be part of a new course "Habitable Worlds". Additionally, the proposed project will support graduate student training, and benefit under-represented groups.
学科分类11 - 工程与技术;1107 - 航空航天工程;03 - 天文学
资助机构US-NASA
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/75917
推荐引用方式
GB/T 7714
ALESSANDRA RICCA.THE CARBON DIOXIDE INFRARED ABSORPTION BANDS; PROBES OF THE CHEMISTRY ON THE SURFACE OF PLANETARY BODIES.2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[ALESSANDRA RICCA]的文章
百度学术
百度学术中相似的文章
[ALESSANDRA RICCA]的文章
必应学术
必应学术中相似的文章
[ALESSANDRA RICCA]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。