CCPortal
Organic Aerosol Formation in Humid SE
项目编号RD-83541201-0
Alison Hanlon
项目主持机构Rutgers The State University of NJ
开始日期2013-04-01
结束日期2015-03-31
英文摘要Secondary organic aerosol (SOA) from biogenic sources is a major contributor to the global aerosol burden. It is estimated to have a profound effect on regional and global climate. There is strong evidence that biogenic SOA can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon (“lensing effect”). The magnitude of these effects remains highly uncertain. It was suggested that organo-nitrogen (ON) compounds are the substances responsible for formation of brown carbon in biogenic SOA. No evidence exists yet for such a link in ambient aerosol. The goal of this project is to provide comprehensive characterization of optical properties of anthropogenically-influenced biogenic SOA, its contribution to aerosol hygroscopicity and light absorption via formation of brown carbon and “lensing” effect, and investigate the link between ON and brown carbon.A set of state-of-the-art instruments will be deployed during two field campaigns, one at the SEARCH site near Centerville, AL during the SOAS campaign in summer 2013, the other at Duke Forest site near Chapel Hill, NC in summer 2014. The two sites are strongly influenced by biogenic sources, but are different in their proximity to anthropogenic sources. Measurements will include aerosol light absorption and scattering at two wavelengths (405 nm and 532 nm); black carbon mass and its mixing state; light absorption spectra by water-soluble aerosol; ON, water soluble organic carbon and the main ionic species in the aerosol. Light absorption and scattering will be measured for both temperature- and humidity-conditioned aerosols, which will help determine absorption enhancement due to the “lensing” effect and the humidity dependence of aerosol light scattering as a function of biogenic SOA, respectively. Measurement of the Ǻngstrom Absorption Exponent over the two wavelengths, evaluation of the relative lensing effect at these two wavelengths, and light absorption properties of water-soluble aerosol will help reduce uncertainty in determining brown carbon. The amount of brown carbon will then be compared to the amount of ON to test the proposed link between the two.This study will provide a comprehensive characterization of optical properties of biogenic SOA and their sensitivity to anthropogenic influence. Several parameters critical for climate modeling, such as absorption cross-section, single scattering albedo and sensitivity to RH, will be measured. The measurements will also provide an indirect test of brown carbon formation mechanisms proposed in smog chamber studies. One graduate student will be trained during the project. The results of the study will be widely disseminated via publications in peer-reviewed publications and presentations at professional conferences. The results of this project will help improve carbonaceous aerosol representation in air quality models, which in turn will help formulating effective strategies to combat air pollution and global climate change.
英文关键词ambient air;global climate;tropospheric;particulates;organics;environmental chemistry;physics;analytical;measurement methods;southeast
资助机构US-EPA
项目经费399928
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/75042
推荐引用方式
GB/T 7714
Alison Hanlon.Organic Aerosol Formation in Humid SE.2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alison Hanlon]的文章
百度学术
百度学术中相似的文章
[Alison Hanlon]的文章
必应学术
必应学术中相似的文章
[Alison Hanlon]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。