CCPortal
Volatile Organic Compounds and Organic Aerosol
项目编号RD-83540901-0
Alison Hanlon
项目主持机构Western Michigan University
开始日期2013-04-01
结束日期2015-03-31
英文摘要Water is the most abundant fine particulate matter species in the eastern US, and yet its impact on ambient secondary organic aerosol formation is poorly understood. This proposal makes use of aqueous OH radical oxidation experiments conducted with ambient samples and evaluation of intermediate model products to improve mechanistic linkages between emissions and secondary organic species (gases and aerosol) in the humid, photochemically-active eastern United States (RFA Q#2). The proposed research is designed to be an integral part of the Southern Oxidant and Aerosol Study (SOAS), a collaborative field campaign taking place in a southeastern location influenced by biogenic emissions and with varying impacts from anthropogenic sources (RFA Q#1). We expect this work to ultimately lead to the development of more effective air quality management through models that better capture critical atmospheric processes. We hypothesize that chemistry that takes place in atmospheric waters has a substantial impact on the formation and properties of organic aerosol (note: we expect that gas-phase chemistry followed by aqueous chemistry will form SOA which is more hygroscopic and has higher O:C ratios). Gas phase photochemical reactions fragment and oxidize organic emissions, leading to the abundant formation of small, polar compounds (e.g., acetic acid, glyoxal, methylglyoxal, glycolaldehyde, acetone) that readily partition into cloud, fog and aerosol waters. Subsequent reactions in the aqueous phase can form low volatility products (e.g., organic acid salts, oligomers) that remain in the particle phase even after water evaporation. Thus, in an environment where photochemistry and abundant liquid water coexist, gas followed by aqueous chemistry could be the predominant source of secondary organic aerosol (SOA). The SOAS campaign is an ideal opportunity to test this.We will: 1) compare predicted and measured aerosol water concentrations during the SOAS campaign; 2) predict concentrations of total and selected water soluble gases for comparison with SOAS measurements and to link to ambient aqueous photooxidation experiments; 3) conduct ambient aqueous photooxidation experiments using water soluble gases scrubbed from the ambient air during the SOAS campaign and model reaction kinetics in these experiments. This will enable us to evaluate the degree to which aqueous photooxidation is captured by current aqueous chemistry models and identify key precursors and products of aqueous chemistry leading to SOA formation, 4) collaborate broadly to address SOAS science goals.A better understanding of SOA formation, properties and behavior in the humid eastern U.S. including dependence on anthropogenic emissions (RFA Q #1, 2). More accurate air quality prediction enabling more accurate air quality management (EPA Goal #1). Scientific insights communicated via peer-reviewed publications and other means.
英文关键词ambient air;environmental chemistry;fine particles;PM2.5
资助机构US-EPA
项目经费387483
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/75037
推荐引用方式
GB/T 7714
Alison Hanlon.Volatile Organic Compounds and Organic Aerosol.2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alison Hanlon]的文章
百度学术
百度学术中相似的文章
[Alison Hanlon]的文章
必应学术
必应学术中相似的文章
[Alison Hanlon]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。