CCPortal
STUDYING AEROSOL/CLOUD FIELDS USING MAS DATA FROM SEAC4RS AND PREVIOUS FIELD CAMPAIGNS
项目编号NNX16AB10G
ERIC WILCOX
项目主持机构DESERT RESEARCH INSTITUTE
开始日期2015-10-16
结束日期2018-04-15
英文摘要Understanding the vulnerability of estuarine ecosystems to anthropogenic impacts requires a quantitative assessment of the dynamic drivers of change to the estuarine carbonate system. Estuaries are currently experiencing multiple environmental stressors that have significant impacts on their carbonate chemistry, making this assessment a major challenge. Although the effects of changes in nutrient run-off (i.e. eutrophication and hypoxia) have been long-studied in many estuaries, much less attention has been given to the impacts of global change on these systems. In this study, a team of field scientists and modelers will attempt to distinguish natural interannual variability in a major US estuary from the impacts of local anthropogenic changes (e.g., nutrient inputs, changing freshwater end member characteristics) and global change (increases in atmospheric temperature, atmospheric carbon dioxide, and sea level), by using numerical models calibrated with CO2-system observations at appropriate spatial and temporal scales. If successful, this will be the first study to quantitatively distinguish between local and global anthropogenic impacts on the CO2 system in an estuary. The results are expected to have important implications for management of Chesapeake Bay because the impact of local anthropogenic stressors on the system, once isolated, may be mitigated by appropriate environmental policy implemented at the regional scale. Two of the PIs have a strong history of proven relationships with Chesapeake Bay managers and policy makers, which will insure direct infusion of these scientific results into ongoing management decisions.

In this project researchers will study the diurnal, seasonal, and interannual variability of the CO2 system in the Chesapeake Bay, a non-pristine estuary, using a combination of conventional shipboard sampling (of dissolved inorganic carbon, and alkalinity) and new high-frequency autonomous instrumentation (for observations of pH and CO2 partial pressure) to assess the impact of extreme events, like tropical storms and nor?easters on carbonate chemistry. These high-quality observations will afford a rigorous assessment of the uncertainty associated with a 30-year water-quality monitoring time series of pH and alkalinity. The team will use an estuarine-carbon-biogeochemical model evaluated and calibrated with the new and long-term observations. Sensitivity experiments will be applied to disentangle multiple impacts on the CO2 system in the estuary over the last 30 years, including increased atmospheric temperature and CO2, sea-level rise, eutrophication due to increases in nutrient run-off, and changing carbonate characteristics of riverine end-members.
学科分类08 - 地球科学;11 - 工程与技术;1107 - 航空航天工程;03 - 天文学
资助机构US-NASA
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/74014
推荐引用方式
GB/T 7714
ERIC WILCOX.STUDYING AEROSOL/CLOUD FIELDS USING MAS DATA FROM SEAC4RS AND PREVIOUS FIELD CAMPAIGNS.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[ERIC WILCOX]的文章
百度学术
百度学术中相似的文章
[ERIC WILCOX]的文章
必应学术
必应学术中相似的文章
[ERIC WILCOX]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。