CCPortal
UNDERSTANDING AND QUANTIFYING CARBON EXPORT TO COASTAL OCEANS THROUGH DELTAIC SYSTEMS
项目编号80NSSC18M0028 P00002
T. GREGORY GUZIK
开始日期2018
结束日期2020-12-31
英文摘要Space weather has various effects on out technology. One important effect is on atmospheric density and thus space operations. Space weather driven atmospheric density variations in particular affect low Earth orbit (LEO) satellites, which represent a several hundred million EUR per year business. These LEO satellites (which include the International Space Station) are crucial for earth observation and communication, are affected by space weather effects during all phases of their operational lifetime. Likewise, all rocket launches and re-entry events and some space debris are affected. A better understanding of space weather processes and their impact on atmospheric density is thus critical for satellite operations. The ‘Space Weather Atmosphere Model and Indices’ (SWAMI) project aims to enhance this understanding by: • developing improved neutral atmosphere and thermosphere models, • make a major leap forward by combining these physics-based and empirical models, • exploiting new geomagnetic, and • improve the forecast of the activity indices. The project stands out by providing an integrated approach to the satellite neutral environment, in which the various space weather drivers are addressed together with model improvement. The outcomes of SWAMI will provide a pathway to improved space weather services as the project will not only address the science issues, but also the transition of models into operational services. Our overarching aim is to give Europe a strategic advantage in whole atmosphere modelling, geomagnetic and solar activity forecasting, and the associated LEO satellite operator services for orbit maintenance, re-entry estimations, as well as launch operations. The objectives of the project are to: Develop a unique new whole atmosphere model, by extending and blending the Unified Model (UM), and the Drag Temperature Model (DTM), which are leading models of their kind in the field. A user-focused operational tool for satellite applications sh
学科分类1107 - 航空航天工程;11 - 工程与技术
资助机构US-NASA
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/73282
推荐引用方式
GB/T 7714
T. GREGORY GUZIK.UNDERSTANDING AND QUANTIFYING CARBON EXPORT TO COASTAL OCEANS THROUGH DELTAIC SYSTEMS.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[T. GREGORY GUZIK]的文章
百度学术
百度学术中相似的文章
[T. GREGORY GUZIK]的文章
必应学术
必应学术中相似的文章
[T. GREGORY GUZIK]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。