CCPortal
MSB-ECA: Climate change and plants on unusual soils: Detecting and modeling ecosystem response of Caribbean serpentine floras
项目编号1833358
Catherine Hulshof
项目主持机构Virginia Commonwealth University
开始日期2018-02-01
结束日期2019-08-31
英文摘要Soils that are unusually harsh (like limestone, serpentine, and gypsum) tend to support distinct floras that are rich in endemic plant species and are among many of the world?s biodiversity hotspots. Whether unusual soil ecosystems respond differently to climate change compared to ?normal? soil types is unknown. On the one hand, stress-tolerant plant traits typical of unusual soil flora may result in greater resilience to climate change. On the other hand, spatial isolation and anthropogenic disturbances, like habitat fragmentation, may make unusual soil ecosystems more vulnerable to climate change. This project will use a combination of field measurements, remote sensing, and climate modeling to determine how serpentine soils in the Caribbean region respond to ongoing and predicted climate change. This research represents the first comprehensive effort to understand how tropical serpentine soils respond to climate change, and consequently will vastly improve our understanding of these unique ecosystems. The information generated by this research will be useful for conserving biodiversity and for improving predictions for other unusual soil ecosystems around the world. The data collected during this project will enhance national and global databases, facilitating further research. This project will strengthen the workforce and increase diversity in science by providing training workshops for students and faculty in data management and analytical skills, integrating the data collected in this research into introductory biology teaching modules, and training four undergraduate and four graduate students in all aspects of the study from data collection to publication.

The proposed research will determine scaling relationships between functional trait diversity and environmental attributes of serpentine and non-serpentine ecosystems, quantify historical patterns and rates of land-use change of serpentine and non-serpentine ecosystems using satellite imagery, and model predicted ecosystem function by integrating soil and functional traits into climate and species distribution models. This project will measure key plant functional traits related to climatic tolerances and dispersal ability in serpentine and non-serpentine ecosystems throughout the Caribbean Basin. Soil chemistry will also be quantified, allowing a standardized comparison of soil characteristics across broad spatial scales. Climate and species distribution models will identify regions and species that are particularly vulnerable or resilient to climate change. Inter-annual trends in vegetation greenness and primary production will be analyzed using Landsat imagery data. Remote sensing analyses will determine the magnitude and rate of habitat fragmentation in serpentine and non-serpentine ecosystems and responses to inter-annual variation in precipitation. This project integrates fine-scale patterns of diversity with large-scale patterns of ecosystem change in a global biodiversity hotspot and will determine whether unusual soil ecosystems are uniquely resilient or uniquely vulnerable to climate change.
学科分类06 - 生物科学
资助机构US-NSF
项目经费255829
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/69355
推荐引用方式
GB/T 7714
Catherine Hulshof.MSB-ECA: Climate change and plants on unusual soils: Detecting and modeling ecosystem response of Caribbean serpentine floras.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Catherine Hulshof]的文章
百度学术
百度学术中相似的文章
[Catherine Hulshof]的文章
必应学术
必应学术中相似的文章
[Catherine Hulshof]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。