CCPortal
DOI10.1002/eap.1682
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
Muller-Karger, Frank E.1; Hestir, Erin2; Ade, Christiana2; Turpie, Kevin3; Roberts, Dar A.4; Siegel, David4; Miller, Robert J.4; Humm, David5; Izenberg, Noam5; Keller, Mary5; Morgan, Frank5; Frouin, Robert6; Dekker, Arnold G.7; Gardner, Royal8; Goodman, James9; Schaeffer, Blake10; Franz, Bryan A.11; Pahlevan, Nima11,12; Mannino, Antonio G.11; Concha, Javier A.11; Ackleson, Steven G.13; Cavanaugh, Kyle C.14; Romanou, Anastasia15; Tzortziou, Maria12,16; Boss, Emmanuel S.17; Pavlick, Ryan18; Freeman, Anthony18; Rousseaux, Cecile S.19; Dunne, John20; Long, Matthew C.21; Klein, Eduardo22; McKinley, Galen A.23; Goes, Joachim; Letelier, Ricardo24; Kavanaugh, Maria24; Roffer, Mitchell25; Bracher, Astrid26; Arrigo, Kevin R.27; Dierssen, Heidi28; Zhang, Xiaodong29; Davis, Frank W.30; Best, Ben31; Guralnick, Robert32; Moisan, John33; Sosik, Heidi M.34; Kudela, Raphael35; Mouw, Colleen B.36; Barnard, Andrew H.37; Palacios, Sherry38; Roesler, Collin39; Drakou, Evangelia G.40; Appeltans, Ward41; Jetz, Walter42
发表日期2018-04-01
ISSN1051-0761
卷号28期号:3页码:749-760
英文摘要

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5nm in the visible and 10nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


英文关键词aquatic;coastal zone;ecology;essential biodiversity variables;H4 imaging;hyperspectral;remote sensing;vegetation;wetland
语种英语
WOS记录号WOS:000430466300012
来源期刊ECOLOGICAL APPLICATIONS
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/62115
作者单位1.Univ S Florida, Coll Marine Sci, 140 7th Ave South, St Petersburg, FL 33701 USA;
2.Univ Calif Merced, Sch Engn, 5200 N Lake Rd, Merced, CA 95340 USA;
3.Univ Maryland, Joint Ctr Earth Syst Technol, 5523 Res Pk Dr, Baltimore, MD 21228 USA;
4.Univ Southern Calif, Dept Geog, Santa Barbara, CA 93106 USA;
5.Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA;
6.Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA;
7.Commonwealth Sci & Ind Res Org, Canberra, ACT, Australia;
8.Stetson Univ, Coll Law, 1401 61st St South, Gulfport, FL 33707 USA;
9.HySpeed Comp, Miami, FL 33143 USA;
10.US EPA, Natl Exposure Res Lab, Res Triangle Pk, Raleigh, NC 27711 USA;
11.Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Ocean Ecol Lab, Greenbelt, MD 20770 USA;
12.Goddard Space Flight Ctr, Sci Syst & Applicat, Greenbelt, MD 20770 USA;
13.Naval Res Lab, Washington, DC 20375 USA;
14.Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA;
15.Columbia Univ, Goddard Inst Space Studies, New York, NY 10025 USA;
16.CUNY, New York, NY 10031 USA;
17.Univ Maine, Sch Marine Sci, Orono, ME 04469 USA;
18.CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA;
19.Univ Space Res Assoc, Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA;
20.NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA;
21.Univ Corp Atmospheric Res, Climate & Global Dynam Lab, Boulder, CO 80301 USA;
22.Univ Simon Bolivar, Lab Sensores Remotos, Caracas 89000, Venezuela;
23.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA;
24.Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA;
25.Roffers Ocean Fishing Forecasting Serv, 60 Westover Dr, West Melbourne, FL 32904 USA;
26.Alfred Wegener Inst Helmholtz Ctr Polar & Marin, Bremerhaven, Germany;
27.Stanford Univ, Stanford, CA 94305 USA;
28.Univ Connecticut, Dept Marine Sci, Groton, CT 06340 USA;
29.Univ North Dakota, Earth Syst Sci & Policy, Grand Forks, ND 58202 USA;
30.Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA;
31.EcoQuants, 508 East Haley St, Santa Barbara, CA 93103 USA;
32.Univ Florida, Florida Museum Nat Hist, Cultural Plaza,3215 Hull Rd, Gainesville, FL 32611 USA;
33.NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA;
34.Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA;
35.Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA;
36.Univ Rhode Isl, Grad Sch Oceanog, Kingston, RI 02881 USA;
37.WET Labs Sea Bird Sci, POB 518, Philomath, OR 97370 USA;
38.NASA, Ames Res Ctr, Airborne Sci Program, Moffett Field, CA 94035 USA;
39.Bowdoin Coll, Dept Earth & Oceanog Sci, Brunswick, ME 04011 USA;
40.Univ Twente, Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands;
41.Intergovt Oceanog Commiss UNESCO, Ocean Biogeog Informat Syst, Oostende, Belgium;
42.Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA
推荐引用方式
GB/T 7714
Muller-Karger, Frank E.,Hestir, Erin,Ade, Christiana,et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems[J]. 美国环保署,2018,28(3):749-760.
APA Muller-Karger, Frank E..,Hestir, Erin.,Ade, Christiana.,Turpie, Kevin.,Roberts, Dar A..,...&Jetz, Walter.(2018).Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.ECOLOGICAL APPLICATIONS,28(3),749-760.
MLA Muller-Karger, Frank E.,et al."Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems".ECOLOGICAL APPLICATIONS 28.3(2018):749-760.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Muller-Karger, Frank E.]的文章
[Hestir, Erin]的文章
[Ade, Christiana]的文章
百度学术
百度学术中相似的文章
[Muller-Karger, Frank E.]的文章
[Hestir, Erin]的文章
[Ade, Christiana]的文章
必应学术
必应学术中相似的文章
[Muller-Karger, Frank E.]的文章
[Hestir, Erin]的文章
[Ade, Christiana]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。