CCPortal
DOI10.1007/s11869-016-0398-z
A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution
Nasari, Masoud M.1; Szyszkowicz, Mieczyslaw1; Chen, Hong2; Crouse, Daniel1; Turner, Michelle C.3,4,5,6; Jerrett, Michael7; Pope, C. Arden, III8; Hubbell, Bryan9; Fann, Neal9; Cohen, Aaron10; Gapstur, Susan M.11; Diver, W. Ryan11; Stieb, David1; Forouzanfar, Mohammad H.12; Kim, Sun-Young13; Olives, Casey14; Krewski, Daniel3; Burnett, Richard T.1
发表日期2016-12-01
ISSN1873-9318
卷号9期号:8页码:961-972
英文摘要

The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.


英文关键词Air pollution;Cohort;Exposure;Mortality;Particulate matter
语种英语
WOS记录号WOS:000387334000012
来源期刊AIR QUALITY ATMOSPHERE AND HEALTH
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/61926
作者单位1.Hlth Canada, Environm Hlth Sci & Res Bur, 200 Eglantine Driveway, Ottawa, ON K1A 0K9, Canada;
2.Publ Hlth Ontario, Oakville, ON, Canada;
3.Univ Ottawa, Inst Populat Hlth, McLaughlin Ctr Populat Hlth Risk Assessment, Ottawa, ON, Canada;
4.Ctr Res Environm Epidemiol CREAL, Madrid, Spain;
5.UPF, Barcelona, Spain;
6.CIBERESP, Barcelona, Spain;
7.Univ Calif Los Angeles, Dept Environm Hlth Sci, Los Angeles, CA USA;
8.Brigham Young Univ, Dept Econ, Provo, UT 84602 USA;
9.US EPA, Durham, NC USA;
10.Hlth Effects Inst, Boston, MA USA;
11.Amer Canc Soc, Epidemiol Res Program, Atlanta, GA 30329 USA;
12.Inst Hlth Metr & Evaluat, Seattle, WA USA;
13.Seoul Natl Univ, Inst Hlth & Environm, Seoul, South Korea;
14.Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA
推荐引用方式
GB/T 7714
Nasari, Masoud M.,Szyszkowicz, Mieczyslaw,Chen, Hong,et al. A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution[J]. 美国环保署,2016,9(8):961-972.
APA Nasari, Masoud M..,Szyszkowicz, Mieczyslaw.,Chen, Hong.,Crouse, Daniel.,Turner, Michelle C..,...&Burnett, Richard T..(2016).A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution.AIR QUALITY ATMOSPHERE AND HEALTH,9(8),961-972.
MLA Nasari, Masoud M.,et al."A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution".AIR QUALITY ATMOSPHERE AND HEALTH 9.8(2016):961-972.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nasari, Masoud M.]的文章
[Szyszkowicz, Mieczyslaw]的文章
[Chen, Hong]的文章
百度学术
百度学术中相似的文章
[Nasari, Masoud M.]的文章
[Szyszkowicz, Mieczyslaw]的文章
[Chen, Hong]的文章
必应学术
必应学术中相似的文章
[Nasari, Masoud M.]的文章
[Szyszkowicz, Mieczyslaw]的文章
[Chen, Hong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。